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Abstract

Type abstraction and intensional type analysis are features seemingly at odds—type abstraction is in-
tended to guarantee parametricity and representation independence, while type analysis is inherently
non-parametric. Recently, however, several researchers have proposed and implemented “dynamic
type generation” as a way to reconcile these features. The idea is that, when one defines an abstract
type, one should also be able to generate at run time a fresh type name, which may be used as a
dynamic representative of the abstract type for purposes oftype analysis. The question remains: in
a language with non-parametric polymorphism, does dynamictype generation provide us with the
same kinds of abstraction guarantees that we get from parametric polymorphism?

Our goal is to provide a rigorous answer to this question. We define a step-indexed Kripke logical
relation for a language with both non-parametric polymorphism (in the form of type-safe cast) and
dynamic type generation. Our logical relation enables us toestablish parametricity and representation
independence results, even in a non-parametric setting, byattaching arbitrary relational interpreta-
tions to dynamically-generated type names. In addition, weexplore how programs that are provably
equivalent in a more traditional parametric logical relation may be “wrapped” systematically to pro-
duce terms that are related by our non-parametric relation,and vice versa. This leads us to develop a
“polarized” variant of our logical relation, which enablesus to distinguish formally between positive
and negative notions of parametricity.

1 Introduction

When we say that a language supportsparametric polymorphism, we mean that “abstract”
types in that language are really abstract—that is, no client of an abstract type can guess
or depend on its underlying implementation (Reynolds, 1983). Traditionally, the para-
metric nature of polymorphism is guaranteed statically by the language’s type system,
thus enabling the so-calledtype-erasureinterpretation of polymorphism by which type
abstractions and instantiations are erased during compilation.

However, some modern programming languages include a useful feature that appears
to be in direct conflict with parametric polymorphism, namely the ability to performin-
tensional type analysis(Harper & Morrisett, 1995). Probably the simplest and most com-
mon instance of intensional type analysis is found in the implementation of languages
supporting a typeDynamic (Abadi et al., 1995). In such languages, any valuev may be
castto type Dynamic, but the castfrom type Dynamic to any typeτ requires a runtime
check to ensure thatv’s actual type equalsτ. Other languages such as Acute (Sewell
et al., 2007) and Alice ML (Rossberget al., 2004), which are designed to support dynamic
loading of modules, require the ability to check dynamically whether a module implements
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an expected interface, which in turn involves runtime inspection of the module’s type
components. There have also been a number of more experimental proposals for languages
that employ atypecase construct to facilitatepolytypicprogramming (e.g.,(Weirich, 2004;
Vytiniotis et al., 2005)).

There is a fundamental tension between type analysis and type abstraction. If one can
inspect the identity of an unknown type at run time, then the type is not really abstract,
so any invariants concerning values of that type may be broken (Weirich, 2004). Conse-
quently, languages with a typeDynamic sometimes distinguish betweencastableandnon-
castabletypes—with types that mention user-defined abstract types belonging to the latter
category—and prohibit values with non-castable types frombeing cast to typeDynamic.

This is, however, an unnecessarily severe restriction, which effectively penalizes pro-
grammers for using type abstraction. Given a user-defined abstract typet—implemented
internally, say, asint—it is perfectly reasonable to cast a value of typet → t to Dynamic, so
long as we can ensure that it will subsequently be cast back only to t → t (not to, say,int →

int or int → t), i.e.,so long as the cast isabstraction-safe. Moreover, such casts are useful
when marshalling (or “pickling”) a modular component whoseinterface refers to abstract
types defined in other components (Rossberget al., 2004). That said, in order to ensure that
casts are abstraction-safe, it is necessary to have some wayof distinguishing (dynamically,
when a cast occurs) between an abstract type and its underlying implementation.

Thus, several researchers have proposed that languages with type analysis facilities
should also supportdynamic type generation(Sewell, 2001; Rossberg, 2003; Vytiniotis
et al., 2005; Rossberg, 2008). The idea is simple: when one defines an abstract type, one
should also be able to generate at run time a “fresh” type name, which may be used as
a unique dynamic representative of the abstract type for purposes of type analysis.1 (We
will see a concrete example of this in Section 2.) Intuitively, the freshness of type name
generation ensures that user-defined abstract types are viewed dynamically in the same
way that they are viewed statically—i.e.,as distinct from all other types.

The question remains: how do we know that dynamic type generation works? In a lan-
guage with intensional type analysis—i.e., non-parametricpolymorphism—can the sys-
tematic use of dynamic type generation provably ensure abstraction safety and provide
us with the same kinds of abstraction guarantees that we get from traditional parametric
polymorphism?

Our goal is to provide a rigorous answer to this question. We study an extension of Sys-
tem F, supporting (1) a type-safecast mechanism, which is essentially a variant of Girard’s
J operator (Girard, 1972), and (2) a facility for dynamic generation of fresh type names.
For brevity, we will call this language G. As a practical language mechanism, thecast
operator is somewhat crude in comparison to the more expressive typecase-style constructs
proposed in the literature, but it is nonetheless useful. For instance, the implementation of
dynamic modules in Alice ML (Rossberget al., 2004) relies merely on acast-like operator,
not atypecase. Moreover, thecast operator renders polymorphismnon-parametric, and it
is one of the simplest, most canonical operators that does so, making it an ideal object

1 In languages with simple module mechanisms, such as Haskell, it is possible to generate unique
type names statically. However, this is not sufficient in thepresence of functors, local modules, or
first-class modules.
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for formal study. Our main technical result is that, in our language G, the parametricity
of polymorphism that is lost due to the presence ofcast may be provably regained via
judicious use of dynamic type generation. More precisely, we show that all terms that are
related by aparametriclogical relation for G can be rendered observationally equivalent
by applying a type-directed “wrapping” function that we can construct systematically.

The rest of the paper is structured as follows. In Section 2, we present our language
under consideration, G, and also give an example to illustrate how dynamic type generation
is useful.

In Section 3, we explain informally the approach that we havedeveloped for reasoning
about G. Our approach employs astep-indexed Kripke logical relation(Ahmedet al., 2009;
Appel & McAllester, 2001), with an unusual form ofpossible worldthat is a close relative
of Sumii & Pierce’s (2003). This section is intended to be broadly accessible to readers
who are generally familiar with the basic idea of relationalparametricity but not with the
details of (advanced) logical relations techniques.

In Section 4, we formalize our logical relation for G and showhow it may be used
to reason about parametricity and representation independence. A particularly appealing
feature of our formalization is that thenon-parametricity of G is encapsulated in the notion
of what it means for twotypesto be logically related to each other when viewed asdata
(rather than asclassifiers). The definition of this type-level logical relation is a one-liner,
which can easily be replaced with an alternative “parametric” version.

In Sections 5–7, we explore how terms related by the parametric version of our logical
relation may be “wrapped” systematically to produce terms related by the non-parametric
version (and vice versa), thus clarifying how dynamic type generation facilitates parametric
reasoning. This leads us, in Section 8, to develop a “polarized” variant of our logical
relation, which enables us to distinguish formally betweenpositive and negative notions of
parametricity. Essentially, positively parametric termsexpect to betreatedparametrically
(by their contexts), whereas negatively parametric terms actually behaveparametrically
themselves.

In Section 9, we extend G with iso-recursive types to form Gµ and adapt the previous
development accordingly. Then, in Section 10, we discuss how the abovementioned “wrap-
ping” function can be seen as an embedding of System F (+ recursive types) into Gµ , which
we conjecture to be fully abstract.

In Section 11, we observe that our logical-relations model is incompletew.r.t. contextual
equivalence in G, but also that there are good reasons for this. Most importantly, our model
is intended to generalize to the setting of a language withtypecase. Thus, while there exist
programs that are equivalent in the presence of acast operator but not in the presence of
the more powerfultypecase, our model does not support proofs of such equivalences. (In
essence, we conjecture that our model is in fact a “better fit”for typecase than forcast; we
have chosen to studycast, as explained above, because it is simpler yet still interesting.)

Finally, in Section 12, we discuss related work, including recent work on the rele-
vant concepts of dynamic sealing (Sumii & Pierce, 2007a) andmulti-language interoper-
ation (Matthews & Ahmed, 2008), and in Section 13, we conclude and suggest directions
for future work.



ZU064-05-FPR main 29 April 2011 15:27

4 Georg Neis, Derek Dreyer and Andreas Rossberg

Types τ ::= α | b | τ × τ | τ → τ | ∀α.τ | ∃α.τ
Values v ::= x | . . . | 〈v,v〉 | λx:τ.e | λα.e | pack 〈τ,v〉 as τ
Terms e ::= v | . . . | 〈e,e〉 | e.1 | e.2 | e e| eτ | pack 〈τ,e〉 as τ |

unpack 〈α,x〉=e in e | cast τ τ | newα≈τ in e
Stores σ ::= ε | σ ,α≈τ
Config’s ζ ::= σ ;e
Evaluation Ctxt’s E ::= . . . | 〈E,e〉 | 〈v,E〉 | E.1 | E.2 | E e | v E | E τ |

pack 〈τ,E〉 as τ | unpack 〈α,x〉=E in e

Type Environments ∆ ::= ε | ∆,α | ∆,α≈τ
Value Environments Γ ::= ε | Γ,x:τ

∆;Γ ⊢ e : τ
· · ·

(ECAST)
∆ ⊢ τ1 ∆ ⊢ τ2

∆;Γ ⊢ cast τ1 τ2 : τ1 → τ2 → τ2

(ENEW)
∆ ⊢ τ ∆,α≈τ;Γ ⊢ e : τ ′ ∆ ⊢ τ ′

∆;Γ ⊢ newα≈τ in e : τ ′

(ECONV)
∆;Γ ⊢ e : τ ′ ∆ ⊢ τ ≈ τ ′

∆;Γ ⊢ e : τ

∆ ⊢ τ

(TNAME)
α≈τ ∈ ∆

∆ ⊢ α
· · ·

∆ ⊢ τ ≈ τ

(CNAME)
α≈τ ∈ ∆
∆ ⊢ α ≈ τ

· · ·

⊢ ζ : τ

(CONF)
⊢ σ σ ;ε ⊢ e : τ ε ⊢ τ

⊢ σ ;e : τ

· · ·
σ ;E[〈v1,v2〉.i] →֒ σ ;E[vi ] (RPROJ)

σ ;E[(λx:τ.e)v] →֒ σ ;E[e[v/x]] (RAPP)
σ ;E[(λα.e)τ] →֒ σ ;E[e[τ/α]] (RINST)

σ ;E[unpack 〈α,x〉=(pack 〈τ,v〉) in e] →֒ σ ;E[e[τ/α][v/x]] (RUNPACK)
(α /∈ dom(σ)) σ ;E[newα≈τ in e] →֒ σ ,α≈τ;E[e] (RNEW)
(τ1 = τ2) σ ;E[cast τ1τ2] →֒ σ ;E[λx1:τ1.λx2:τ2.x1] (RCAST1)
(τ1 6= τ2) σ ;E[cast τ1τ2] →֒ σ ;E[λx1:τ1.λx2:τ2.x2] (RCAST2)

Fig. 1. Syntax and Semantics of G (excerpt)

2 The LanguageG

Figure 1 defines our non-parametric language G. For the most part, G is a standard call-by-
valueλ -calculus, consisting of the usual types and terms from System F (Girard, 1972),
including pairs and existential types. (We could instead use a Church encoding of exis-
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tentials via universals, but building existentials in as primitive gives us more leeway later,
cf. Section 5.) We also assume an unspecified set of base typesb, along with suitable
constants of—and primitive operations over—those types (indicated by. . . in the syntax).

Two additional, non-standard constructs isolate the essential aspects of the class of
languages we are interested in:

• castτ1 τ2 v1v2 convertsv1 from typeτ1 to τ2. It checks that those two types are the
same at the time of evaluation. If so, the operatorsucceedsand returnsv1. Otherwise,
it fails and defaults tov2, which acts as anelse clause of the target typeτ2.

• newα≈τ inegenerates a fresh abstract type nameα. Values of typeα can be formed
using itsrepresentation typeτ. Both types are deemedisomorphic, but not equiva-
lent. That is, they are considered equal asclassifiers, but not asdata. In particular,
castα τ v1v2 will not succeed in castingv1 from α to τ—it will instead return the
default valuev2.

Ourcast operator is essentially the same as Harper & Mitchell’sTypeCondoperator (Harper
& Mitchell, 1999), which was itself a variant of the non-parametric J operator that Girard
studied in his thesis (Girard, 1972). Ournew construct is similar to previously proposed
constructs for dynamic type generation (Rossberg, 2003; Vytiniotis et al., 2005; Rossberg,
2008). However, we do not requireexplicit term-level type coercions to witness the isomor-
phism between an abstract type nameα and its representationτ. Instead, our type system
is simple enough that we can perform this conversionimplicitly without losing significant
type information.2

For convenience, we will occasionally use expressions of the form letx=e1 ine2, which
abbreviate the term(λx:τ1.e2)e1 (with τ1 being an appropriate type fore1). We omit the
type annotation for functions and existential packages where clear from context. Moreover,
we take the liberty to generalize binary tuples ton-ary ones where necessary and to use
pattern matching notation to decompose tuples in the obvious manner.

2.1 Typing Rules

The typing rules for the System F fragment of G are completelystandard and thus omitted
from Figure 1. We focus on the non-standard rules related tocast andnew. Full formal
details of the type system are given in Section A.

Typing of casts is straightforward (Rule ECAST): cast τ1 τ2 is simply treated as a func-
tion of typeτ1 → τ2 → τ2. Its first argument is the value to be converted, and its second
argument is the default value returned in the case of failure. The rule merely requires that
the two types be well-formed.

For an expressionnewα≈τ ine, which bindsα in e, Rule ENEW checks that the body
e is well-typed under the assumption thatα is implemented by the representation typeτ.
For that purpose, we enrich type environments∆ with entries of the formα≈τ that keep
track of the representation types tied to abstract type names. (Note thatτ may not mention
α.) We call such environment entriestype isomorphism assumptions.

2 It is not obvious whether this would still be possible if the language were enriched with features
such as singleton kinds (Rossberg, 2008) or type-level computations (Weirichet al., 2011).
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Syntactically, type “names” are just type variables in the calculus (and like other type
variables, they areα-convertible). As a matter of terminology, however, we refer as type
names only to those type variablesα that are bound with the syntax “α≈τ” (that is, either
by new, in a storeσ , or with a respective entry in a type environment∆).

When viewed as data (i.e., when inspected by thecast operator), types are considered
equivalent iff they are syntactically equal (moduloα-conversion). In contrast, when viewed
as classifiers for terms, knowledge about the representation of type names may be taken
into account. Rule ECONV says that if a terme has a typeτ ′, it may be assigned any
other type that isisomorphicto τ ′. Type isomorphism, in turn, is defined by the judgment
∆ ⊢ τ1 ≈ τ2. We only show the rule CNAME, which discharges an isomorphism assumption
α≈τ from the environment; the other rules implement the congruence closure of this
axiom. The important point here is that equivalent types areisomorphic, but isomorphic
types are not necessarily equivalent.

Finally, Rule ENEW also requires that the typeτ ′ of the bodye does not containα (i.e.,
τ ′ must be well formed in∆ alone). A type of this form can always be derived by applying
ECONV to convertτ ′ to τ ′[τ/α].

Note that the typing rules ensure that type environments areordered and acyclic. Conse-
quently, any type∆ ⊢ τ can be normalized to a typeτ ′ that does not contain any type names
and is isomorphic toτ, i.e.,∆′ ⊢ τ ′ and∆⊢ τ ≈ τ ′, where∆′ is ∆ without all the isomorphism
assumptions. This normalization is done using the substitution ∆∗ that is obtained from∆
in the following way:

ε∗ def
= /0

(∆,α)∗
def
= ∆∗

(∆,α≈τ)∗
def
= ∆∗,α 7→∆∗(τ)

Given this normalization, it easy to see that type checking is decidable.

2.2 Dynamic Semantics

The operational semantics has to deal with the generation offresh type names. To that end,
we introduce atype storeσ to record generated type names. Hence, reduction is defined
onconfigurations(σ ;e) instead of plain terms. Figure 1 shows the main reduction rules.

The reduction rules for the F fragment are as usual and do not actually touch the store.
However, types occurring in F constructs can contain type names bound in the store.

Reducing the expressionnewα≈τ ine creates a new entry forα in the type store. We
rely on the usual hygiene convention for bound variables to ensure thatα is fresh with
respect to the current store (which can always be achieved byα-renaming).3 Note that this
rule is the single source of nondeterminism in our operational semantics.

The two remaining rules are for casts. A cast takes two types and checks whether or
not they are equivalent (i.e.,syntactically equal). In either case, the expression reduces to
a function that will return the appropriate one of the additional value arguments,i.e., the

3 A well-known alternative approach would omit the type storein favor of using scope extrusion
rules fornew binders, as in Rossberg (2003).
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value to be converted in case of success, and the default value otherwise. In the former case,
type preservation is ensured because source and target types are known to be equivalent.

Type preservation can be expressed using the typing ruleCONF for configurations. We
formulate this rule by treating the type store as a type environment, which is possible
because type stores are a syntactic subclass of type environments. (In a similar manner, we
can write⊢ σ for well-formedness of storeσ , by viewing it as a type environment.) It is
worth noting that the representation types in the store are never actually inspected by the
dynamic semantics. In particular, they are only needed for specifying well-formedness of
configurations and proving type soundness.

2.3 Motivating Example

Consider the following attempt to write a simple functional“binary semaphore” ADT (Pitts,
2005) in G. Following Mitchell & Plotkin (1988), we use an existential type, as we would
in System F:

τsem := ∃α.α × (α → α)× (α → bool)

esem := pack〈int,〈1,λx: int .(1−x),λx: int .(x 6= 0)〉〉 as τsem

A semaphore is essentially a flag that can be in two states: either lockedor unlocked. The
state can be toggled using the first function of the ADT, and itcan be polled using the
second. Our little module uses an integer value for representing the state, taking 1 for
locked and 0 for unlocked. It is an invariant of the implementation that the integer never
takes any other value—otherwise, the toggle function wouldno longer operate correctly.

In System F, the implementation invariant would be protected by the fact that existential
types are parametric: there is no way to inspect the witness of α after opening the package,
and hence no client could produce values of typeα other than those returned by the module
(nor could they apply integer operations to values of typeα).

Not so in G. The following program usescast to forge a valuesof the abstract semaphore
typeα:

eclient := unpack〈α,〈s0, toggle,poll〉〉 = esemin

lets= cast int α 666s0 in

〈poll s, poll(toggle s)〉

Because reduction ofunpack simply substitutes the representation typeint for α, the
consecutive cast succeeds, and the whole expression evaluates to〈true,true〉—although
the second component should have toggledsand thus be different from the first.

The way to prevent this in G is to create a fresh type nameα ′ as witness of the abstract
type:

esem1 := newα ′ ≈ int in

pack〈α ′,〈1,λx: int .(1−x),λx: int .(x 6= 0)〉〉 as τsem

After replacing the initial semaphore implementation withthis one,eclient will evaluate
to 〈true, false〉 as desired—thecast expression will no longer succeed, becauseα will be
substituted by the dynamic type nameα ′, andα ′ 6= int. (Moreover, sinceα ′ is only visible
statically in the scope of thenew expression, the client has no access toα ′, and thus cannot
use type conversion to convert terms fromint to α ′ either.)
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Now, while it is clear thatnew ensures proper type abstraction in the client program
eclient, we want to prove that it does so foranyclient program. A standard way of doing so is
by showing a more general result, namelyrepresentation independence(Reynolds, 1983):
we show that the moduleesem1 is contextually equivalentto another module of the same
type that implements the abstract type in a different way. Contextual equivalence means
that no G program can observe any difference between the two modules. By choosing that
other module to be a suitable reference implementation of the ADT in question, we can
conclude that the “real” one behaves properly under all circumstances.

The obvious candidate for a reference implementation of thesemaphore ADT is the
following:

esem2 := newα ′ ≈ bool in

pack〈α ′,〈true,λx:bool .¬x,λx:bool .x〉〉 as τsem

Here, the semaphore state is represented directly by a Boolean flag and does not rely on
any additional invariant. If we can show thatesem1is contextually equivalent toesem2, then
we can conclude thatesem1’s type representation is truly being held abstract.

2.4 Contextual Equivalence

In order to be able to reason about representation independence, we need to make precise
the notion of contextual equivalence.

A contextC is an expression with a single hole[ ], defined in the usual manner (see
Section A.4). Typing of contexts is defined by a judgment form⊢C : (∆;Γ;τ) (∆′;Γ′;τ ′),
where the triple(∆;Γ;τ) indicates the type of the hole. The judgment implies that forany
expressione with ∆;Γ ⊢ e : τ we have∆′;Γ′ ⊢C[e] : τ ′. The rules are straightforward, the
key rule being the one for holes:

∆ ⊆ ∆′ Γ ⊆ Γ′

⊢ [ ] : (∆;Γ;τ) (∆′;Γ′;τ)

We can now define contextual approximation and contextual equivalence as follows
(with σ ;e↓ asserting thatσ ;e terminates):

Definition 1(Contextual Approximation and Equivalence)
Let ∆;Γ ⊢ e1 : τ and∆;Γ ⊢ e2 : τ.

∆;Γ ⊢ e1 ≤ e2 : τ def
⇔ ∀C,τ ′,σ . ⊢ σ ∧ ⊢C : (∆;Γ;τ) (σ ;ε;τ ′)

∧ σ ;C[e1]↓⇒ σ ;C[e2]↓

∆;Γ ⊢ e1 ≡ e2 : τ def
⇔ ∆;Γ ⊢ e1 ≤ e2 : τ ∧ ∆;Γ ⊢ e2 ≤ e1 : τ

That is, contextual approximation∆;Γ ⊢ e1 ≤ e2 : τ means that for any well-typed program
contextC with a hole of appropriate type, the termination ofC[e1] implies the termination
of C[e2]. Contextual equivalence∆;Γ ⊢ e1 ≡ e2 : τ is just approximation in both directions.

Considering that G does not explicitly contain any recursive or looping constructs, the
reader may wonder why termination is used as the notion of “distinguishing observation”
in our definition of contextual equivalence. The reason is that thecast operator, together
with impredicative polymorphism, makes it possible to write well-typed non-terminating
programs (Harper & Mitchell, 1999). (This was Girard’s reason for studying the J operator
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in the first place (Girard, 1972).) Moreover, usingcast, one can encode arbitrary recursive
function definitions (see Section A.5 for details). Other forms of observation may then be
encoded in terms of (non-)termination.

3 A Logical Relation for G: Main Ideas

Following Reynolds (1983) and Mitchell (1986), our generalapproach to reasoning about
parametricity and representation independence is to definea logical relation. Essentially,
logical relations give us a tractable way of proving that twoterms are contextually equiv-
alent, which in turn gives us a way of proving that abstract types are really abstract. Of
course, since polymorphism in G is non-parametric, the definition of our logical relation in
the cases of universal and existential types is somewhat unusual. To place our approach in
context, we first review the traditional approach to defininglogical relations for languages
with parametric polymorphism, such as System F.

3.1 Logical Relations for Parametric Polymorphism

Although the technical meaning of “logical relation” is rather woolly, the basic idea is
to define an equivalence (or approximation) relation on programs inductively, following
the structure of their types. To take the canonical example of arrow types, we would say
that two functions are logically related at the typeτ1 → τ2 if, when passed arguments that
are logically related atτ1, either they both diverge or they both converge to values that
are logically related atτ2. The fundamental theoremof logical relations states that the
logical relation is a congruence with respect to the constructs of the language. Together
with what Pitts (2005) callsadequacy—i.e.,the fact (built into the definition of the logical
relation) that logically related terms have equivalent termination behavior—the fundamen-
tal theorem implies that logically related terms are contextually equivalent, since contextual
equivalence is defined precisely to be the largest adequate congruence.

Traditionally, the parametric nature of polymorphism is made clear by the definition of
the logical relation for universal and existential types. Intuitively, two type abstractions,
λ α.e1 andλ α.e2, are logically related at type∀α.τ if they map relatedtypearguments
to related results. But what does it mean for two type arguments to be related? Moreover,
once we settle on two related type argumentsτ ′1 andτ ′2, at what type do we relate the results
e1[τ ′1/α] ande2[τ ′2/α]?

One approach would be to restrict “related type arguments” to be thesametypeτ ′. Thus,
λ α.e1 andλ α.e2 would be logically related at∀α.τ iff, for any (closed) typeτ ′, it is the
case thate1[τ ′/α] ande2[τ ′/α] are logically related at the typeτ[τ ′/α]. A key problem
with this definition, however, is that, due to the quantification overanyargument typeτ ′,
the typeτ[τ ′/α] may in fact be larger than the type∀α.τ, and thus the definition of the
logical relation is no longer inductive in the structure of the type. Another problem is that
this definition does not tell us anything about the parametric nature of polymorphism.

Reynolds’ alternative approach is a generalization of Girard’s “candidates” method for
proving strong normalization for System F (Girard, 1972). The idea is simple: instead of
defining two type arguments to be related only if they are the same, allowanytwo different
type arguments to be related by an (almost) arbitrary relational interpretation (subject to
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certainadmissibilityconstraints). That is, we parameterize the logical relation at typeτ
by an interpretation functionρ , which maps each free type variable ofτ to a pair of types
τ ′1,τ ′2 together with some (admissible) relation between values ofthose types. Then, we say
thatλ α.e1 andλ α.e2 are logically related at type∀α.τ under interpretationρ iff, for any
closed typesτ ′1 andτ ′2 and any relationR between values of those types, it is the case that
e1[τ ′1/α] ande2[τ ′2/α] are logically related at typeτ under interpretationρ ,α 7→ (τ ′1,τ ′2,R).

The miracle of Reynolds/Girard’s method is that it simultaneously (1) renders the logical
relation inductively well-defined in the structure of the type, and (2) demonstrates the
parametricity of polymorphism: logically related type abstractions must behave the same
even when passed completely different type arguments, so their behavior may not analyze
the type argument and behave in different ways for differentarguments. Dually, we can
show that two ADTspack 〈τ1,v1〉 as ∃α.τ andpack 〈τ2,v2〉 as ∃α.τ are logically related
(and thus contextually equivalent) by exhibitingsomerelational interpretationR for the
abstract typeα, even if the underlying type representationsτ1 andτ2 are different. This is
the essence of what is meant by “representation independence”.

Unfortunately, in the setting of G, Reynolds/Girard’s method is not directly applicable,
precisely because polymorphism in G is not parametric! Thisessentially forces us back to
the first approach suggested above, namely to only consider type arguments to be logically
related if they are equal. Moreover, it makes sense: thecast operator views types as data,
so types may only be logically related if they are indistinguishable as data.

The natural questions, then, are: (1) what metric do we use todefine the logical relation
inductively, if not the structure of the type, and (2) how do we establish that dynamic type
generation regains a form of parametricity? We address these questions in the next two
sections, respectively.

3.2 Step-Indexed Logical Relations for Non-Parametricity

First, in order to provide a metric for inductively defining the logical relation, we em-
ploy step-indexing. Step-indexed logical relations were proposed originallyby Appel and
McAllester (2001) as a way of giving a simple operational-semantics-based model for
general recursive types in the context of foundational proof-carrying code. In subsequent
work by Ahmed and others (Ahmed, 2006; Ahmedet al., 2009), the method has been
adapted to support relational reasoning in a variety of settings, including untyped and
imperative languages.

The key idea of step-indexed logical relations is to index the definition of the logical
relation not only by the type of the programs being related, but also by a natural number
n representing (intuitively) “the number of steps left in thecomputation”. That is, if two
termse1 ande2 are logically related at typeτ for n steps, then if we place them in any
program contextC and run the resulting programs forn steps of computation, we should
not be able to produce observably different results (e.g., C[e1] evaluating to 5 andC[e2]

evaluating to 7). To show thate1 ande2 are contextually equivalent, then, it suffices to
show that they are logically related forn steps, for anyn.

To see how step-indexing helps us, consider how we might define a step-indexed logical
relation for G in the case of universal types: two type abstractionsλ α.e1 andλ α.e2 are
logically related at∀α.τ for n steps iff, for any type argumentτ ′, it is the case thate1[τ ′/α]
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ande2[τ ′/α] are logically related atτ[τ ′/α] for n−1 steps. This reasoning is sound because
the only way a program context can distinguish betweenλ α.e1 andλ α.e2 in n steps is by
first applying them to a type argumentτ ′—which incurs a step of computation for theβ -
reduction(λ α.ei)τ ′ →֒ ei [τ ′/α]—and then distinguishing betweene1[τ ′/α] ande2[τ ′/α]

within the nextn−1 steps. Moreover, although the typeτ[τ ′/α] may be larger than∀α.τ,
the step indexn−1 is smaller, so the logical relation is inductively well-defined.

3.3 Kripke Logical Relations for Dynamic Parametricity

Second, in order to establish the parametricity propertiesof dynamic type generation, we
employKripke logical relations, i.e., logical relations that are indexed bypossible worlds.
(In fact, step-indexed logical relations may already be understood as a special case of
Kripke logical relations, in which the step index serves as the notion of possible world, and
wheren is a future world ofm iff n ≤ m.) Kripke logical relations are appropriate when
reasoning about properties that are true only under certainconditions, such as equivalence
of modules with local mutable state. For instance, an imperative ADT might only behave
according to its specification if its local data structures obey certain invariants. Possible
worlds allow one to codify suchlocal invariantson the machine store (Pitts & Stark, 1993).

In our setting, the local invariant we want to establish is what a dynamically generated
type namemeans. That is, we will use possible worlds to assign relational interpreta-
tions to dynamically generated type names. For example, consider the programsesem1
andesem2 from Section 2. We want to show they are logically related at∃α. α × (α →

α)× (α → bool) in an empty initial worldw0 (i.e., under empty type stores). The proof
proceeds roughly as follows. First, we evaluate the two programs. This will have the effect
of generating a fresh type nameα ′, with α ′ ≈ int extending the type store of the first
program andα ′ ≈ bool extending the type store of the second program. At this point,
we correspondingly extend the initial worldw0 with a mapping fromα ′ to the relation
R= {(1,true),(0, false)}, thus forming a new worldw that specifies the semantic meaning
of α ′.

We now must show that the values

pack〈α ′,〈1,λx: int .(1−x),λx: int .(x 6= 0)〉〉 as τsem

and

pack〈α ′,〈true,λx:bool .¬x,λx:bool .x〉〉 as τsem

are logically related in the worldw. Since G’s logical relation for existential types is non-
parametric, the two packages must have thesametype representation, but of course the
whole point of usingnew was to ensure that they do (namely, it isα ′). The remainder
of the proof is showing that the value components of the packages are related at the type
α ′×(α ′ →α ′)×(α ′ → bool) under the interpretationρ = α ′ 7→ (int,bool,R) derived from
the worldw. This last part is completely analogous to what one would show in a standard
representation independence proof.

In short, the possible worlds in our Kripke logical relations bring back the ability to
assign arbitrary relational interpretationsR to abstract types, an ability that was seem-
ingly lost when we moved to a non-parametric logical relation. The only catch is that
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we can only assign arbitrary interpretations todynamictype names, not tostatic, univer-
sally/existentially quantified type variables.

There is one minor technical matter that we glossed over in the above proof sketch but is
worth mentioning. Due to nondeterminism of type name allocation, the evaluation ofesem1
andesem2may result inα ′ being replaced byα ′

1 in the former andα ′
2 in the latter (for some

freshα ′
1 6= α ′

2). Moreover, we are also interested in proving equivalence of programs that
do not necessarily allocate exactly the same number of type names in the same order.

Consequently, we also include in our possible worlds a partial bijectionη between the
type names of the first program and the type names of the secondprogram, which specifies
how each dynamically generated abstract type is concretelyrepresented in the stores of the
two programs. We require them to be in 1-1 correspondence because thecast construct
permits the program context to observe equality on type names, as follows:

equal? :∀α.∀β .bool
def
=

Λα.Λβ . cast ((α → α) → bool) ((β → β ) → bool)

(λx:(α → α).true)(λx:(β → β ). false)(λx:β .x)

We then consider types to be logically related if they are thesameup to this bijection. For
instance, in our running example, when extendingw0 to w, we would not only extend its
relational interpretation withα ′ 7→ (int,bool,R) but also extend itsη with α ′ 7→ (α ′

1,α ′
2).

Thus, the type representations of the two existential packages,α ′
1 andα ′

2, though syntacti-
cally distinct, would still be logically related underw.

4 A Logical Relation for G: Formal Details

We now formalize our logical relation for G. For technical reasons related to step-indexing
we do not define it directly in terms of equivalent termination behavior. Instead, we define it
in terms of approximated termination behavior, such that, if e1 ande2 are logically related,
thene1 contextually approximatese2 (i.e., C[e2] terminates wheneverC[e1] does). Logical
equivalence then is just logical approximation in both directions.

Figures 2 and 3 display our step-indexed Kripke logical relation for G in full gory detail.
It is easiest to understand this definition by making two passes over it. First, as the step
indices have a way of infecting the whole definition in a superficially complex—but really
very straightforward—way, we will first walk through the whole definition ignoring all
occurrences ofn’s andk’s (as well as auxiliary functions like the⌊·⌋n operator). Second, we
will pinpoint the few places where step indices actually play an important role in ensuring
that the logical relation is inductively well-founded.

4.1 Highlights of the Logical Relation

The first section of Figure 2 defines the kinds of semantic objects that are used in the
construction of the logical relation. RelationsRare sets ofatoms, which are pairs of terms,
e1 ande2, indexed by a possible worldw. The definition of Atom[τ1,τ2] requires thate1

ande2 have the typesτ1 andτ2 under the type storesw.σ1 andw.σ2, respectively. (We use
the dot notationw.σi to denote thei-th type store component ofw, and analogous notation
for projecting out the other components of worlds.)
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Rval def
= {(k,w,v1,v2) | (k,w,v1,v2) ∈ R}

Atomn[τ1,τ2]
def
= {(k,w,e1,e2) | k < n∧w∈ Worldk∧ ⊢ w.σ1;e1 : τ1 ∧ ⊢ w.σ2;e2 : τ2}

Reln[τ1,τ2]
def
= {R⊆ Atomval

n [τ1,τ2] |
∀(k,w,v1,v2) ∈ R. ∀(k′,w′) ⊒ (k,w). (k′,w′,v1,v2) ∈ R}

SomeReln
def
= {r = (τ1,τ2,R) | fv(τ1,τ2) = /0∧R∈ Reln[τ1,τ2]}

Interpn
def
= {ρ ∈ TVar

fin
→ SomeReln}

Conc
def
= {η ∈ TVar

fin
→ TVar×TVar |

∀α,α ′ ∈ dom(η).α 6= α ′ ⇒ η1(α) 6= η1(α ′)∧η2(α) 6= η2(α ′)}

Worldn
def
= {w = (σ1,σ2,η,ρ) |

⊢ σ1 ∧ ⊢ σ2∧η ∈ Conc∧ ρ ∈ Interpn∧dom(η) = dom(ρ)∧
ρ1 = σ∗

1 ◦η1∧ρ2 = σ∗
2 ◦η2}

⌊(σ1,σ2,η,ρ)⌋n
def
= (σ1,σ2,η,⌊ρ⌋n)

⌊ρ⌋n
def
= {α 7→⌊r⌋n | ρ(α) = r}

⌊(τ1,τ2,R)⌋n
def
= (τ1,τ2,⌊R⌋n)

⌊R⌋n
def
= {(k,w,e1,e2) ∈ R | k < n}

(k′,w′) ⊒ (k,w)
def
⇔ k′ ≤ k∧w′ ∈ Worldk′ ∧w′.η ⊒ w.η ∧w′.ρ ⊒ ⌊w.ρ⌋k′ ∧∀i ∈ {1,2}.

w′.σi ⊇ w.σi ∧ rng(w′.η i)− rng(w.η i) ⊆ dom(w′.σi)−dom(w.σi)

η ′ ⊒ η def
⇔ ∀α ∈ dom(η). η ′(α) = η(α)

ρ ′ ⊒ ρ def
⇔ ∀α ∈ dom(ρ). ρ ′(α) = ρ(α)

(k′,w′) = (k,w)
def
⇔ k′ < k∧ (k′,w′) ⊒ (k,w)

⊲R
def
= {(k,w,e1,e2) | ∀(k′,w′) = (k,w). (k′,w′,e1,e2) ∈ R}

Fig. 2. Worlds and Auxiliary Definitions

Rel[τ1,τ2] defines the set ofadmissiblerelations, which are permitted to be used as
the semantic interpretations of abstract types. For our purposes, admissibility is simply
monotonicity—i.e.,closure under world extension. That is, if a relation in Rel relates two
valuesv1 andv2 under a worldw, then the relation must relate those values in any future
world of w. (We discuss the definition of world extension below.) Monotonicity is needed
in order to ensure that we can extend worlds with interpretations of new dynamic type
names, without interfering somehow with the interpretations of the old ones.

Worldsw are 4-tuples(σ1,σ2,η ,ρ), which describe a set of assumptions under which
pairs of terms are related. Here,σ1 andσ2 are the type stores under which the terms are
typechecked and evaluated. The finite mappingsη andρ share a common domain, which
can be understood as the set of abstract type names that have been generated dynamically.
These “semantic” type names do not exist in either storeσ1 or σ2. (In fact, technically
speaking, we consider dom(η) = dom(ρ) to be bound variables of the worldw.) Rather,
they provide a way of referring to an abstract type that is represented bysometype name
α1 in σ1 andsometype nameα2 in σ2. Thus, for each nameα ∈ dom(η) = dom(ρ),
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theconcretizationη maps the “semantic” nameα to a pair of “concrete” names from the
storesσ1 andσ2, respectively. (See the end of Section 3.3 for an example of such anη .)
As the definition of Conc makes clear, distinct semantic typenames must have distinct
concretizations; consequently,η represents apartial bijectionbetweenσ1 andσ2.

The last component of the worldw is ρ , which assigns relational interpretations to the
aforementioned semantic type names. Formally,ρ maps eachα to a tripler = (τ1,τ2,R),
whereR is a monotone relation between values of typesτ1 andτ2. (Again, see the end
of Section 3.3 for an example of such aρ .) The final condition in the definition of World
stipulates that the closed syntactic types in the range ofρ and the concrete type names in
the range ofη are isomorphic. As a matter of notation, we will writeη i andρ i to denote
the type substitutions{α 7→ αi | η(α) = (α1,α2)} and{α 7→ τi | ρ(α) = (τ1,τ2,R)},
respectively.

The second section of Figure 2 displays the definition of world extension. In order
for w′ to extendw (written w′ ⊒ w), it must be the case that (1)w′ specifies semantic
interpretations for a superset of the type names thatw interprets, (2) for the names thatw
interprets,w′ must interpret them in the same way, and (3) any new semantic type names
that w′ interprets may only correspond tonewconcrete type names that did not exist in
the stores ofw. Condition (3) here corresponds to the common practice in Kripke logical
relations proofs, whereby one extends a given “input” worldto a future “output” world only
when one wants to establish some invariants about freshly allocated entities (in the case of
G, fresh type names). Although this condition is not strictly necessary for establishing
soundness of the logical relation, it has not in our experience made it more difficult to
prove anything. Moreover, we have found it to be useful when proving certain examples
(e.g.,the “order independence” example in Section 4.4), because it cuts down on the set of
worlds one must consider when one universally quantifies over a future world.

Figure 3 defines the logical relation itself.V[[τ]]ρ is the logical relation for values,E[[τ]]ρ
is the one for terms, andT[[Ω]]w is the one fortypes as data, as described in Section 3 (here,
Ω represents thekind of types).

V[[τ]]ρ relates values at the typeτ, where the free type variables ofτ are given rela-
tional interpretations byρ . Ignoring the step indices,V[[τ]]ρ is mostly very standard. For
instance, at certain points (namely, in the→ and∀ cases), when we quantify over logically
related (value or type) arguments, we must allow them to comefrom an arbitrary future
world w′ in order to ensure monotonicity. This kind of quantificationover future worlds is
commonplace in Kripke logical relations.

The only really interesting bit in the definition ofV[[τ]]ρ is the use ofT[[Ω]]w to char-
acterize when the twotypearguments (resp. components) of a universal (resp. existential)
are logically related. As explained in Section 3.3, we consider two types to be logically
related in worldw iff they are the same up to the partial bijectionw.η . Formally, we define
T[[Ω]]w as a relation on triples(τ1,τ2, r), whereτ1 andτ2 are the two logically related
types andr is a relation telling us how to relate values of those types. To be logically
related means thatτ1 andτ2 are the concretizations (according tow.η) of some “semantic”
type τ ′. Correspondingly,r is the logical relationV[[τ ′]]w.ρ at that semantic type. Thus,
when we writeE[[τ]]ρ ,α 7→ r in the definition ofV[[∀α.τ]]ρ , this is roughly equivalent to
writing E[[τ[τ ′/α]]]ρ (which our discussion in Section 3.2 might have led the reader to
expect to see here instead). The reason for our present formulation is thatE[[τ[τ ′/α]]]ρ is
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Vn[[α]]ρ def
= ⌊ρ(α).R⌋n

Vn[[b]]ρ def
= {(k,w,v,v) ∈ Atomn[b,b]}

Vn[[τ × τ ′]]ρ def
= {(k,w,〈v1,v′1〉,〈v2,v′2〉) ∈ Atomn[ρ1(τ × τ ′),ρ2(τ × τ ′)] |

(k,w,v1,v2) ∈Vn[[τ]]ρ ∧ (k,w,v′1,v
′
2) ∈Vn[[τ ′]]ρ}

Vn[[τ ′ → τ]]ρ def
= {(k,w,λx:τ1.e1,λx:τ2.e2) ∈ Atomn[ρ1(τ ′ → τ),ρ2(τ ′ → τ)] |

∀(k′,w′,v1,v2) ∈Vn[[τ ′]]ρ. (k′,w′) ⊒ (k,w) ⇒
(k′,w′,e1[v1/x],e2[v2/x]) ∈ En[[τ]]ρ}

Vn[[∀α.τ]]ρ def
= {(k,w,λα.e1,λα.e2) ∈ Atomn[ρ1(∀α.τ),ρ2(∀α.τ)] |

∀(k′,w′) ⊒ (k,w). ∀(τ1,τ2, r) ∈ Tk′ [[Ω]]w′.
(k′,w′,e1[τ1/α],e2[τ2/α]) ∈ ⊲En[[τ]]ρ,α 7→r}

Vn[[∃α.τ]]ρ def
= {(k,w,pack 〈τ1,v1〉,pack〈τ2,v2〉) ∈ Atomn[ρ1(∃α.τ),ρ2(∃α.τ)] |

∃r.(τ1,τ2, r) ∈ Tk[[Ω]]w∧ (k,w,v1,v2) ∈ ⊲Vn[[τ]]ρ,α 7→r}

En[[τ]]ρ def
= {(k,w,e1,e2) ∈ Atomn[ρ1(τ),ρ2(τ)] |

∀ j < k. ∀σ1,v1.(w.σ1;e1 →֒ j σ1;v1) ⇒∃w′,v2.(k− j ,w′) ⊒ (k,w)∧
w′.σ1 = σ1∧ (w.σ2;e2 →֒∗ w′.σ2;v2)∧ (k− j ,w′,v1,v2) ∈Vn[[τ]]ρ}

Tn[[Ω]]w
def
= {(w.η1(τ),w.η2(τ),(w.ρ1(τ),w.ρ2(τ),Vn[[τ]]w.ρ)) | fv(τ) ⊆ dom(w.ρ)}

Gn[[ε]]ρ def
= {(k,w, /0, /0) | k < n∧w∈ Worldk}

Gn[[Γ,x:τ]]ρ def
= {(k,w,(γ1,x7→v1),(γ2,x7→v2)) |

(k,w,γ1,γ2) ∈ Gn[[Γ]]ρ ∧ (k,w,v1,v2) ∈Vn[[τ]]ρ}
Dn[[ε]]w

def
= {( /0, /0, /0)}

Dn[[∆,α]]w
def
= {((δ1,α 7→τ1),(δ2,α 7→τ2),(ρ,α 7→r)) |

(δ1,δ2,ρ) ∈ Dn[[∆]]w∧ (τ1,τ2, r) ∈ Tn[[Ω]]w}

Dn[[∆,α≈τ]]w
def
= {((δ1,α 7→β1),(δ2,α 7→β2),(ρ,α 7→r)) |

(δ1,δ2,ρ) ∈ Dn[[∆]]w∧
∃α ′.w.ρ(α ′) = r ∧w.η(α ′) = (β1,β2)∧
w.σ1(β1) = δ1(τ)∧w.σ2(β2) = δ2(τ)∧ r.R= Vn[[τ]]ρ}

∆;Γ ⊢ e1 - e2 : τ def
⇔ ∆;Γ ⊢ e1 : τ ∧∆;Γ ⊢ e2 : τ ∧

∀n≥ 0. ∀w0 ∈ Worldn. ∀(δ1,δ2,ρ) ∈ Dn[[∆]]w0. ∀(k,w,γ1,γ2) ∈ Gn[[Γ]]ρ.
(k,w) = (n,w0) ⇒ (k,w,δ1γ1(e1),δ2γ2(e2)) ∈ En[[τ]]ρ

Fig. 3. Logical Relation for G

not quite right: the free variables ofτ are interpreted byρ , but the free variables ofτ ′ are
dynamictype names whose interpretations are given byw.ρ . It is possible to mergeρ and
w.ρ into a unified interpretationρ ′, but we feel our present approach is cleaner.

Another point of note: sincer is uniquely determined fromτ1 andτ2, it is not really
necessary to include it in theT[[Ω]]w relation. However, as we shall see in Section 6,
formulating the logical relation in this way has the benefit of isolating all of the non-
parametricity of our logical relation in the one-line definition of T[[Ω]]w, which may then
easily be replaced with a more traditional parametric one.

The term relationE[[τ]]ρ is very similar to that in previous step-indexed Kripke logical
relations (Ahmedet al., 2009). Briefly, it says that two terms are related in an initial world
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w if whenever the first evaluates to a value underw.σ1, the second evaluates to a value
underw.σ2, and the resulting stores and values are related in some future worldw′.

The remainder of the definitions in Figure 3 serve to formalize a logical relation foropen
terms.G[[Γ]]ρ is the logical relation on value substitutionsγ, which asserts that relatedγ ’s
must map variables in dom(Γ) to related values.D[[∆]]w is the logical relation on type
substitutions. It asserts that relatedδ ’s must map variables in dom(∆) to types that are
related inw. For type variablesα bound asα ≈ τ, theδ ’s must mapα to a type name whose
semantic interpretation inw is precisely the logical relation atτ. Analogously toT[[Ω]]w,
the relationD[[∆]]w also includes a relational interpretationρ , which may be uniquely
determined from theδ ’s.

Finally, the open logical relation∆;Γ ⊢ e1 - e2 : τ is defined in a fairly standard way.
It says that for any starting worldw0, and any type substitutionsδ1 andδ2 related in that
world, if we are given related value substitutionsγ1 and γ2 in any future worldw, then
δ1γ1e1 andδ2γ2e2 are related inw as well.

4.2 Why and Where the Steps Matter

As we explained in Section 3.2, step indices play a critical role in making the logical
relation well-founded. Essentially, whenever we run into an apparent circularity, we “go
down a step” by defining ann-level property in terms of an (n−1)-level one. Of course,
this trick only works if, at all such “stepping points”, the only way that an adversarial
program context could possibly tell whether then-level property holds or not is by taking
one step of computation and then checking whether the underlying (n−1)-level property
holds. Fortunately, this is the case.

Since worlds contain relations, and relations contain setsof tuples that include worlds,
a naı̈ve construction of these objects would have an inconsistent cardinality. We thus
stratify both worlds and relations by a step index:n-level worldsw ∈ Worldn containn-
level interpretationsρ ∈ Interpn, which map type variables ton-level relations;n-level
relationsR∈ Reln[τ1,τ2] only contain atoms indexed by a step levelk < n and a world
w∈ Worldk. Although our possible worlds have a different structure than in previous work,
the technique of mutual world and relation stratification issimilar to that used in Ahmed’s
thesis (2004), as well as recent work by Ahmed, Dreyer & Rossberg (2009).

Intuitively, the reason this works in our setting is as follows. Viewed as a judgment, our
logical relation asserts that two termse1 ande2 are logically related fork steps in a world
w at a typeτ under an interpretationρ (whose domain contains the free type variables of
τ). Clearly, in order to handle the case whereτ is just a type variableα, the relationsr in
the range ofρ must include atoms at step indexk (i.e., ther ’s must be in SomeRelk+1).

But what about the relations in the range ofw.ρ? Those relations only come into play in
the universal and existential cases of the logical relationfor values. Consider the existential
case (the universal one is analogous). There,w.ρ pops up in the definition of the relation
r that comes fromTk[[Ω]]w. However, thatr is only needed in defining the relatedness of
the valuesv1 andv2 at step levelk−1 (note the definition of⊲R in the second section of
Figure 2). Consequently, we only needr to include atoms at stepk−1 and lower (i.e., r
must be in SomeRelk), so the worldw from whichr is derived need only be in Worldk.
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As this discussion suggests, it iscrucial that we “go down a step” in the universal and
existential cases of the logical relation. For the other cases, it is not necessary to go down
a step, although we have the option of doing so. For example, we could definek-level
relatedness at pair typeτ1× τ2 in terms of (k−1)-level relatedness atτ1 andτ2. But since
the type gets smaller, there is no need to. For clarity, we have only gone down a step in
the logical relation at the points where it is absolutely necessary, and we have used the⊲

notation to underscore those points.

4.3 Interesting Properties of the Logical Relation

The main result concerning our logical relation is, of course, that it provides a sound
technique for proving contextual equivalence of G programs. We now present the technical
development necessary to establish this result. For convenience, we often omit the step
annotation on the restriction operator when it is obvious from context,e.g.,we will write
(k− j −1,⌊w⌋) instead of(k− j −1,⌊w⌋k− j−1). Furthermore, at many places we are re-
quired to establish the well-typedness conditions imposedby the definition of Atom[τ1,τ2],
but since this is completely straightforward and usually tedious, we will omit this part
of the proofs. If the reader is interested in seeing how the syntactic typing conditions
are maintained, we would refer them to the first author’s master’s thesis, which shows
the full gory details in two representative cases (namely, the proofs of Lemma 10.21 and
Theorem 10.41).

4.3.1 Basic Lemmas

We start with a few very basic lemmas that are needed ubiquitously in subsequent proofs
(to the extent that we will usually not even apply them explicitly).

Lemma 1(Transitivity of World Extension)
1. If (k′′,w′′) ⊒ (k′,w′) and(k′,w′) ⊒ (k,w), then(k′′,w′′) ⊒ (k,w).
2. If (k′′,w′′) = (k′,w′) and(k′,w′) = (k,w), then(k′′,w′′) = (k,w).

Lemma 2(Restriction)
1. If k′ ≤ k, thenVk′ [[τ]]ρ = ⌊Vk[[τ]]ρ⌋k′ .
2. If k′ ≤ k, thenEk′ [[τ]]ρ = ⌊Ek[[τ]]ρ⌋k′ .

Irrelevance (Lemma 3) states that the logical relation onlydepends onρ ’s interpretation
of those variables that actually occur inτ.

Lemma 3(Irrelevance)
If ⌊ρ ′⌋n ⊒ ⌊ρ⌋n and ftv(τ) ⊆ dom(ρ), then

1. Vn[[τ]]ρ ′ = Vn[[τ]]ρ ,
2. En[[τ]]ρ ′ = En[[τ]]ρ , and
3. Gn[[τ]]ρ ′ = Gn[[τ]]ρ .

The next lemma is a combination of the previous two, but for the type and type substi-
tution relations.

Lemma 4
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1. If (τ1,τ2, r) ∈ Tn[[Ω]]w0 and(k,w) ⊒ (n,w0), then(τ1,τ2,⌊r⌋k) ∈ Tk[[Ω]]w.
2. If (δ1,δ2,ρ) ∈ Dn[[∆]]w0 and(k,w) ⊒ (n,w0), then(δ1,δ2,⌊ρ⌋k) ∈ Dk[[∆]]w.

Finally, Inclusion tells us that in order to show two values related in the term relation, it
suffices to show them related in the value relation.

Lemma 5(Inclusion)
Vn[[τ]]ρ ⊆ En[[τ]]ρ

Proof
Follows easily from the definition ofEn[[τ]]ρ , by choosing the final worldw′ to be the same
as the initial worldw.

4.3.2 Validity

The first important property to show is that, under the assumption thatρ is a valid relational
interpretation of the free variables ofτ (i.e.,ρ ∈ Interp and ftv(τ) ⊆ dom(ρ)), the logical
relation (LR) for valuesVn[[τ]]ρ is itself a valid relation (i.e.,an element of Rel).

For the sake of convenience, whenever we writeVn[[τ]]ρ , En[[τ]]ρ , Gn[[Γ]]ρ , Dn[[∆]]w, and
Tn[[Ω]]w from now on, we assumeρ ∈ Interp,w∈ World, and ftv(τ) ⊆ dom(ρ).

As a first step, we note that every element of the value and termrelations is a proper
atom.

Lemma 6(Atomicity)
1. Vn[[τ]]ρ ⊆ Atomval

n [ρ1(τ),ρ2(τ)]

2. En[[τ]]ρ ⊆ Atomn[ρ1(τ),ρ2(τ)]

The key property of Rel is that its elements must be closed under world extension.
Proving this for the value relation is very easy because the property has mostly been built
into its definition.

Lemma 7(Closure Under World Extension)
1. If (k,w,v1,v2) ∈Vn[[τ]]ρ and(k′,w′) ⊒ (k,w), then(k′,w′,v1,v2) ∈Vn[[τ]]ρ .
2. If (k,w,γ1,γ2) ∈ Gn[[Γ]]ρ and(k′,w′) ⊒ (k,w), then(k′,w′,γ1,γ2) ∈ Gn[[Γ]]ρ .

Lemma 8(LR-Validity)
Vn[[τ]]ρ ∈ Reln[ρ1(τ),ρ2(τ)]

Proof
Follows from Atomicity and Closure Under World Extension.

4.3.3 Compatibility

The basic building blocks for proving soundness of our logical relation are what Pitts calls
compatibilitylemmas (Pitts, 2005), which state that the logical relationis closed under the
constructs of the language.



ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 19

We first have three properties about syntactic type substitutions, which will be needed for
proving well-formedness of different syntactic elements.Although (as mentioned earlier)
we will be omitting proofs of syntactic-typing side conditions in the present paper, we
include these lemmas here as they help to clarify the subtle relationship between the various
substitutions inhabitingDn[[∆]]w andGn[[Γ]]ρ .

Lemma 9
If (δ1,δ2,ρ) ∈ Dn[[∆]]w, thenρ i = w.σ∗

i ◦ δi andw.σi ⊢ δi : ∆ andε ⊢ ρ i : ∆.

Lemma 10
If (k,w,γ1,γ2) ∈ Gn[[Γ]]ρ , thenw.σi ;ε ⊢ γi : ρ i(Γ).

The following is a standard type substitution lemma for logical relations. It is mainly
needed in showing the compatibility lemmas for quantified types.

Lemma 11(LR-Substitution)
1. Vn[[τ]]ρ ,α 7→(ρ1(τ ′),ρ2(τ ′),Vn[[τ ′]]ρ) = Vn[[τ[τ ′/α]]]ρ .
2. En[[τ]]ρ ,α 7→(ρ1(τ ′),ρ2(τ ′),Vn[[τ ′]]ρ) = En[[τ[τ ′/α]]]ρ .

The following two lemmas are needed for dealing with the particularities of the non-
parametric logical relation. We know by the definition ofT andD that for any(δ1,δ2,ρ) ∈

Dn[[∆]]w0 and anyα bound in ∆ there is someτα such thatδ1(α) and δ2(α) are the
concretizations ofτα w.r.t. w0, i.e., δ1(α) = w0.η1(τ) andδ2(α) = w0.η2(τ). We define
an operation, au, that yields the substitutionδ mapping eachα to its correspondingτα (see
Lemma 12):

Definition 2(Anti-Unifier)
Assume that(δ1,δ2,ρ) ∈ Dn[[∆]]w. The anti-unifying substitution ofδ1 andδ2 with respect
to w.η , written au(δ1,δ2,w.η), is defined as follows.

au(ε,ε,η)
def
= ε

au((δ1,α 7→τ1),(δ2,α 7→τ2),η)
def
= au(δ1,δ2,η),α 7→τ whereτ = η−1(τ1) = η−2(τ2)

Here,η−i is short for(η i)−1, the inverse ofη i . The latter exists, because the definition
of Conc ensures thatη i is injective. Furthermore, sinceη is a partial bijection on the
generated type names,η−1(τ1) andη−2(τ2) are guaranteed to be equal.

Lemma 12
1. If δ = au(δ1,δ2,η), thenδ1 = η1 ◦ δ andδ2 = η2◦ δ .
2. If (δ1,δ2,ρ) ∈ Dn[[∆]]w0 and δ = au(δ1,δ2,w0.η) and (k,w) ⊒ (n,w0), thenδ =

au(δ1,δ2,w.η).

Proof
1. Follows easily from the definition.
2. First, note that(δ1,δ2,⌊ρ⌋k) ∈ Dk[[∆]]w by Lemma 4. Furthermore, sincew.η is an

extension ofw0.η , the former agrees with the latter on dom(w0.η). As we know
ftv(δi(α)) ⊆ rng(w0.η) for anyα, it is clear that au(δ1,δ2,w0.η) = au(δ1,δ2,w.η).
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The motivation for defining au is the following property, which is crucial for proving
compatibility of- for the rules EINST, EPACK, and ECAST, in which its non-parametricity
becomes manifest. The property essentially combines LR-Substitution (Lemma 11) with
the observation that, when(δ1,δ2,ρ) ∈ Dn[[∆]]w0, it means thatρ is actually highly con-
strained. Specifically,⌊ρ(α).r⌋n must be the logical relationVn[[δ (α)]]w0.ρ , whereδ is the
anti-unifier ofδ1 andδ2.

Lemma 13
If (δ1,δ2,ρ) ∈ Dn[[∆]]w0 andδ = au(δ1,δ2,w0.η) and∆ ⊢ τ, then:

1. Vn[[τ]]ρ = Vn[[δ (τ)]]w0.ρ
2. En[[τ]]ρ = En[[δ (τ)]]w0.ρ

Proof
By primary induction onn and secondary induction on the derivation of∆ ⊢ τ. We show
the interesting cases in Appendix B.

Many of the compatibility proofs are straightforward—theydo not deal with worlds in
any interesting way, and the non-parametricity does not show up because it is hidden in
T[[Ω]]. Those proofs are thus essentially analogous to their counterparts in a parametric
System F-like setting (Ahmed, 2006) and we only show one example (EUNPACK) here.
The only proofs that actually involve interesting reasoning about worlds are for EINST and
EPACK. We show the latter; the former is similar (and dual).

Lemma 14(Compatibility:EPACK)
If ∆;Γ ⊢ e1- e2 : τ[τ ′/α] and∆ ⊢ τ ′, then∆;Γ ⊢ pack 〈τ ′,e1〉- pack 〈τ ′,e2〉 : ∃α.τ.

Proof
• Supposew0 ∈ Worldn, (δ1,δ2,ρ) ∈ Dn[[∆]]w0, (k,w,γ1,γ2) ∈ Gn[[Γ]]ρ and(k,w) =

(n,w0).
• To show:(k,w,δ1γ1(pack 〈τ ′,e1〉),δ2γ2(pack 〈τ ′,e2〉)) ∈ En[[∃α.τ]]ρ
• Assumew.σ1;δ1γ1(pack 〈τ ′,e1〉) →֒ j σ1;pack 〈δ1(τ ′),v1〉 where j < k.
• Instantiating the premise yields(k,w,δ1γ1(e1),δ2γ2(e2)) ∈ En[[τ[τ ′/α]]]ρ .
• Consequently, there exists(k− j,w′) ⊒ (k,w) such that

w.σ2;δ2γ2(pack 〈τ ′,e2〉) →֒∗ w′.σ2;pack 〈δ2(τ ′),v2〉

with w′.σ1 = σ1 and(k− j,w′,v1,v2) ∈Vn[[τ[τ ′/α]]]ρ .
• It remains to show(k− j,w′,pack 〈δ1(τ ′),v1〉,pack 〈δ2(τ ′),v2〉) ∈Vn[[∃α.τ]]ρ .
• Let r := (w′.σ∗

1 (δ1(τ ′)),w′.σ∗
2 (δ2(τ ′)),Vk− j [[τ ′]]ρ).

• We now have to show that this witness relation actually has the shape required by
the definition ofT[[Ω]], i.e., that(δ1(τ ′),δ2(τ ′), r) ∈ Tk− j [[Ω]]w′:

— Let δ := au(δ1,δ2,w0.η).
— It suffices to show(δ1(τ ′),δ2(τ ′), r) = (w′.η1δ (τ ′),w′.η2δ (τ ′),

(w′.ρ1δ (τ ′),w′.ρ2δ (τ ′),Vk− j [[δ (τ ′)]]w′.ρ)).
— By Lemma 4,(δ1,δ2,⌊ρ⌋) ∈ Dk− j [[∆]]w′.
— First,δi(τ ′) = w′.η iδ (τ ′) by Lemma 12.
— Second,w′.σ∗

i (δi(τ ′)) = w′.σ∗
i (w′.η iδ (τ ′)) = w′.ρ iδ (τ ′) becausew′ ∈ World.

— Finally,Vk− j [[τ ′]]ρ = Vk− j [[δ (τ ′)]]w′.ρ by Lemma 13.
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• It thus suffices to show that(k′′,w′′,v1,v2) ∈Vn[[τ]]ρ ,α 7→r for any(k′′,w′′) = (k−
j,w′), which follows by Closure Under World Extension and LR-Substitution from
(k− j,w′,v1,v2) ∈Vn[[τ[τ ′/α]]]ρ .

Lemma 15(Compatibility:EUNPACK)
If ∆;Γ ⊢ e1- e2 : ∃α.τ ′ and∆,α;Γ,x:τ ′ ⊢ e3 - e4 : τ with ∆ ⊢ τ,
then∆;Γ ⊢ unpack〈α,x〉=e1 in e3- unpack〈α,x〉=e2 in e4 : τ.

Proof
• Supposew0 ∈ Worldn, (δ1,δ2,ρ) ∈ Dn[[∆]]w0, (k,w,γ1,γ2) ∈ Gn[[Γ]]ρ and(k,w) =

(n,w0).
• Show:(k,w,δ1γ1(unpack 〈α,x〉=e1 in e3),δ2γ2(unpack 〈α,x〉=e2 in e4)) in En[[τ]]ρ
• Assume thatw.σ1;δ1γ1(unpack 〈α,x〉=e1 in e3) terminates:

w.σ1;δ1γ1(unpack 〈α,x〉=e1 in e3)

→֒ j1 σ ′
1;unpack 〈α,x〉=(pack 〈τ1,v1〉) in δ1γ1(e3)

→֒1 σ ′
1;δ1γ1(e3)[τ1/α][v1/x]

→֒ j2 σ1;v3

and thatj1 +1+ j2 =: j < k.
• Instantiating the first premise yields the existence of(k− j1,w′) ⊒ (k,w) such that

w.σ2;δ2γ2(unpack 〈α,x〉=e2 in e4)

→֒∗ w′.σ2;unpack 〈α,x〉=(pack 〈τ2,v2〉) in δ2γ2(e4)

with w′.σ1 = σ ′
1 and(k− j1,w′,pack 〈τ1,v1〉,pack 〈τ2,v2〉) ∈Vn[[∃α.τ ′]]ρ .

• Hence there isr such that(τ1,τ2, r) ∈ Tk− j1[[Ω]]w′ and (k− j1 − 1,⌊w′⌋,v1,v2) ∈

Vn[[τ ′]]ρ ,α 7→r.
• By Lemma 4,(δ1,δ2,⌊ρ⌋k− j1) ∈ Dk− j1[[∆]]w′.
• Let (δ ′

1,δ
′
2,ρ

′) := ((δ1,α 7→τ1),((δ2,α 7→τ2),(⌊ρ⌋k− j1,α 7→r))), hence(δ ′
1,δ

′
2,ρ

′) ∈

Dk− j1[[∆,α]]w′.
• By Closure Under World Extension we know(k− j1−1,⌊w′⌋,γ1,γ2) ∈ Gn[[Γ]]ρ and

thus(k− j1−1,⌊w′⌋,γ1,γ2) ∈ Gk− j1[[Γ]]ρ ′.
• Let γ ′i := γi ,x7→vi , so we get(k− j1−1,⌊w′⌋,γ ′1,γ ′2) ∈ Gk− j1[[Γ,x:τ ′′]]ρ ′.
• Instantiating the second premise withw′ ∈ Worldk− j1, (δ ′

1,δ ′
2,ρ ′) ∈ Dk− j1[[∆,α]]w′

and(k− j1−1,⌊w′⌋,γ ′1,γ ′2) ∈ Gk− j1[[Γ,x:τ ′′]]ρ ′ now yields
(k− j1−1,⌊w′⌋,δ ′

1γ ′1(e3),δ ′
2γ ′2(e4)) ∈ Ek− j1[[τ]]ρ ′.

• Note that

δ ′
i γ ′i (ei+2)

= δi(γi(ei+2)[vi/x])[τi/α])

= δiγi(ei+2)[vi/x][τi/α]) since ⊢ w′.σi ;vi : (ρ ,α 7→Vk− j1[[τ
′′]]w′.ρ)i(τ ′)

= δiγi(ei+2)[τi/α][vi/x] dito

• Therefore,σ ′
1;δ1γ1(e3)[τ1/α][v1/x] →֒ j2 σ1;v3 implies the existence of(k− j,w′′)⊒

(k− j1−1,⌊w′⌋) such that

w′.σ2;δ2γ2(e4)[τ2/α][v2/x] →֒∗ w′′σ2;v4

with w′′.σ1 = σ1 and(k− j,w′′,v3,v4) ∈Vk− j1[[τ]]ρ ′.
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• Since∆ ⊢ τ, the latter implies(k− j,w′′,v3,v4) ∈Vn[[τ]]ρ .

In the proof of compatibility forcast, we first have to argue that the argument types
on the left-hand side,δ1(τ1) andδ1(τ2), are equal if and only if the argument types on
the right-hand side,δ2(τ1) andδ2(τ2), are, so that we have the same reduction on both
sides. This is easy to see with the help of Lemma 12, which tells us thatδi = w0.η i ◦ δ
(whereδ is the anti-unifying substitution ofδ1 andδ2)—meaning thatδ1 andδ2 map to
types that are syntactically identical up to some bijectionon type names. Recall that we
consider dom(w0.η) to contain bound variables and thus can assume it to be disjoint from
rng(w0.η i) without loss of generality. We then have to distinguish two cases. If the type
arguments are not equal (the cast fails), there is not much todo, as expected. If the cast
succeeds, however, we basically need to show that the argument types are alsosemantically
equal,i.e., Vn[[τ1]]ρ = Vn[[τ2]]ρ . Sinceδ (τ1) = δ (τ2), this follows from Lemma 13.

Lemma 16(Compatibility:ECAST)
If ∆ ⊢ Γ and∆ ⊢ τ1 and∆ ⊢ τ2, then∆;Γ ⊢ cast τ1 τ2- cast τ1 τ2 : τ1 → τ2 → τ2.

Proof
• Supposew0 ∈ Worldn, (δ1,δ2,ρ) ∈ Dn[[∆]]w0, (k,w,γ1,γ2) ∈ Gn[[Γ]]ρ and(k,w) =

(n,w0).
• To show:(k,w,cast δ1(τ1) δ1(τ2),cast δ2(τ1) δ2(τ2)) ∈ En[[τ1 → τ2 → τ2]]ρ .
• Let δ := au(δ1,δ2,w0.η).
• Thenδ (τ1) = w0.η−iδi(τ1) andw0.η−iδi(τ2) = δ (τ2) by Lemma 12.
• Consequently,

δ1(τ1) = δ1(τ2)

⇐⇒ w0.η−1δ1(τ1) = w0.η−1δ1(τ2)

⇐⇒ δ (τ1) = δ (τ2)

⇐⇒ w0.η−1δ2(τ1) = w0.η−1δ2(τ2)

⇐⇒ δ2(τ1) = δ2(τ2)

• Caseδi(τ1) = δi(τ2):

— Then we have the following reductions:

w.σi ;cast δi(τ1) δi(τ2) →֒1 w.σi ;λx1.λx2.x1

— Hence it suffices to show
(k−1,⌊w⌋,λx1.λx2.x1,λx1.λx2.x1) ∈Vn[[τ1 → τ2 → τ2]]ρ .

— So suppose(k′,w′) ⊒ (k−1,⌊w⌋) and(k′,w′,v1,v2) ∈Vn[[τ1]]ρ .
— To show:(k′,w′,λx2.v1,λx2.v2) ∈Vn[[τ2 → τ2]]ρ .
— So suppose(k′′,w′′) ⊒ (k′,w′) and(k′′,w′′,v′1,v

′
2) ∈Vn[[τ2]]ρ .

— To show:(k′′,w′′,v1,v2) ∈Vn[[τ2]]ρ
— By Closure Under World Extension,(k′′,w′′,v1,v2) ∈Vn[[τ1]]ρ .
— The claim then follows byδ (τ1) = δ (τ2) and Lemma 13.

• Caseδi(τ1) 6= δi(τ2):

— Then we have the following reductions:

w.σi ;cast δi(τ1) δi(τ2) →֒1 w.σi ;λx1.λx2.x2
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— Hence it suffices to show
(k−1,⌊w⌋,λx1.λx2.x2,λx1.λx2.x2) ∈Vn[[τ1 → τ2 → τ2]]ρ .

— So suppose(k′,w′) ⊒ (k−1,⌊w⌋) and(k′,w′,v1,v2) ∈Vn[[τ1]]ρ .
— To show:(k′,w′,λx2.x2,λx2.x2) ∈Vn[[τ2 → τ2]]ρ .
— So suppose(k′′,w′′) ⊒ (k′,w′) and(k′′,w′′,v′1,v

′
2) ∈Vn[[τ2]]ρ .

— To show:(k′′,w′′,v′1,v
′
2) ∈Vn[[τ2]]ρ , which is immediate.

Sincenew is the only construct that modifies the type store, its compatibility proof is
also the only one where we actually have to extend theη andρ components of the initial
world w with bindings for some fresh dynamically-generated type name (here,α). Theη is
extended withα 7→ (α1,α2), whereα1 andα2 are the concrete fresh names that are chosen
when evaluating the left and rightnew expressions. Theρ is extended so that the relational
interpretation ofα is simply the logical relation at typeτ ′. The proof of this lemma is
highly reminiscent of the proof of compatibility for reference allocation in a language with
mutable references (Ahmedet al., 2009).

Lemma 17(Compatibility:ENEW)
If ∆,α≈τ ′;Γ ⊢ e1- e2 : τ and∆ ⊢ τ and∆ ⊢ Γ,
then∆;Γ ⊢ new α≈τ ′ in e1- new α≈τ ′ in e2 : τ.

Proof
• Supposew0 ∈ Worldn, (δ1,δ2,ρ) ∈ Dn[[∆]]w0, (k,w,γ1,γ2) ∈ Gn[[Γ]]ρ and(k,w) =

(n,w0).
• To show:(k,w,δ1γ1(new α≈τ ′ in e1),δ2γ2(newα≈τ ′ in e2)) ∈ En[[τ]]ρ .
• Assumew.σ1;δ1γ1(new α≈τ ′ in e1) terminates:

w.σ1;δ1γ1(new α≈τ ′ in e1)

→֒1 w.σ1,α1≈δ1(τ ′);δ1γ1(e1)[α1/α]

→֒ j ′ σ1;v1

and 1+ j ′ =: j < k.
• Note that

w.σ2;δ2γ2(new α≈τ ′ in e2) →֒1 w.σ2,α2≈δ2(τ ′);δ2γ2(e2)[α2/α].

• Let wα := ((w.σ1,α1≈δ1(τ ′)),(w.σ2,α2≈δ2(τ ′)),(w.η ,α 7→(α1,α2)),(w.ρ ,α 7→r))
for r := (ρ1(τ ′),ρ2(τ ′),Vk[[τ ′]]⌊ρ⌋), so(k,wα )⊒ (k,w) and(δ1,δ2,⌊ρ⌋)∈Dk[[∆]]wα .

• Let (δ ′
1,δ ′

2,ρ ′) := ((δ1,α 7→α1),(δ2,α 7→α2),(⌊ρ⌋,α 7→r)).
• Note thatwα .σi(αi) = δi(τ ′), αi = wα .η i(α), andwα .ρ(α).R= Vk[[τ ′]]⌊ρ⌋.
• Therefore,(δ ′

1,δ ′
2,ρ ′) ∈ Dk[[∆,α≈τ ′]]wα .

• By Closure Under World Extension we know(k− 1,⌊wα⌋,γ1,γ2) ∈ Gn[[Γ]]ρ and
therefore(k−1,⌊wα⌋,γ1,γ2) ∈ Gk[[Γ]]ρ ′.

• Now instantiate the premise withwα ∈ Worldk, (δ ′
1,δ ′

2,ρ ′) ∈ Dk[[∆,α≈τ ′]]wα ,
(k−1,⌊wα⌋,γ1,γ2) ∈ Gk[[Γ]]ρ ′ and(k−1,⌊wα⌋) = (k,wα ) to get
(k−1,⌊wα⌋,δ ′

1γ1(e1),δ ′
2γ2(e2)) ∈ Ek[[τ]]ρ ′.

• Note thatδ ′
i γi(ei) = δiγi(ei)[αi/α].
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• Consequently, there exists(k− j,w′) ⊒ (k−1,wα) such that

w.σ2,α2≈δ2(τ ′);δ2γ2(e2)[α2/α] →֒∗ w′.σ2;v2

with w′.σ1 = σ1 and(k− j,w′,v1,v2) ∈Vk[[τ]]ρ ′.
• Because of∆ ⊢ τ, the latter implies(k− j,w′,v1,v2) ∈Vn[[τ]]ρ .

Compatibility for ECONV follows from the fact that isomorphic types are semantically
equal, which we prove separately below. The interesting case is whenτ1 is a variableα
bound in∆ as α ≈ τ2, and the result in this case follows easily from the definition of
D[[∆,α≈τ]]w.

Lemma 18(Type Isomorphism)
If ∆ ⊢ τ1 ≈ τ2 and(δ1,δ2,ρ) ∈ Dn[[∆]]w, then

1. Vn[[τ1]]ρ = Vn[[τ2]]ρ and
2. En[[τ1]]ρ = En[[τ2]]ρ .

Lemma 19(Compatibility:ECONV)
If ∆;Γ ⊢ e1- e2 : τ ′ and∆ ⊢ τ ≈ τ ′, then∆;Γ ⊢ e1- e2 : τ.

Proof
Follows from Type Isomorphism.

4.3.4 Soundness

Theorem 20(Fundamental Property of-)
If ∆;Γ ⊢ e : τ, then∆;Γ ⊢ e- e : τ.

Proof
By induction on the typing derivation, in each case using theappropriate compatibility
lemma.

The full compatibility and the Fundamental Property of- are at the heart of the sound-
ness proof. Based on that and the following small lemma we canfinally establish that- is
a precongruence with respect to the constructs of the language and then prove the actual
soundness theorem.

Lemma 21(LR-Weakening)
If ∆;Γ ⊢ e1- e2 : τ, ∆′ ⊇ ∆, Γ′ ⊇ Γ, and∆′ ⊢ Γ, then∆′;Γ′ ⊢ e1 - e2 : τ.

Lemma 22(Precongruence of-)
If ∆;Γ ⊢ e1- e2 : τ and⊢C : (∆;Γ;τ) ; (∆′;Γ′;τ ′), then∆′;Γ′ ⊢C[e1]-C[e2] : τ ′.

Proof
By induction on the derivation of the context typing, in eachcase using the appropriate
compatibility lemma. For a context containing another termwe also need the Fundamental
Property; forC = [ ] we need LR-Weakening.

Theorem 23(Soundness of- w.r.t.≤)
If ∆;Γ ⊢ e1- e2 : τ, then∆;Γ ⊢ e1 ≤ e2 : τ.
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Proof
• Suppose⊢ σ and⊢C : (∆;Γ;τ) ; (σ ; /0;τ ′) andσ ;C[e1]↓, i.e.,σ ;C[e1] →֒

j σ1;v1.
• To show:σ ;C[e2]↓

• By Precongruence we haveσ ;ε ⊢C[e1]-C[e2] : τ ′.
• To instantiate this, we first need to create an initial world representingσ . Sayσ =

α1≈τ1, . . . ,αn≈τn.
• Let

σ0 := ε
σi+1 := σi ,αi+1≈τi+1

δ0 := /0
δi+1 := δi ,αi+1 7→αi+1

ρ0 := /0
ρi+1 := ρi ,αi+1 7→Vj+2[[τi+1]]ρi

w := (σ ,σ ,{αi 7→(αi ,αi) | 1≤ i ≤ n},ρn)

• Note thatρi ∈ Interpj+2 andw∈ World j+2.
• Furthermore, given 0≤ i < n, it is easy to see that(δi ,δi ,ρi) ∈ D j+2[[σi ]]w implies

(δi+1,δi+1,ρi+1) ∈ D j+2[[σi+1]]w.
• Together with(δ0,δ0,ρ0) ∈ D j+2[[ε]]w this means(δn,δn,ρn) ∈ D j+2[[σ ]]w.
• Instantiateσ ;ε ⊢C[e1]-C[e2] : τ ′ with w∈ World j+2, (δn,δn,ρn) ∈ D j+2[[σ ]]w and

( j +1,⌊w⌋, /0, /0)∈ G j+2[[ε]]ρn to get( j +1,⌊w⌋,δn(C[e1]),δn(C[e2])) ∈ E j+2[[τ ′]]ρn.
• Note thatδn(C[ei ]) = C[ei ].
• Because of the assumptionσ ;C[e1] →֒

j σ1;v1, we therefore getσ ;C[e2]↓.

4.4 Examples

Semaphore.We now return to our semaphore example from Section 2 and showhow
to prove representation independence for the two differentimplementationsesem1 and
esem2. Recall that the former usesint, the latterbool. To show that they are contextually
equivalent, it suffices by Soundness to show that each logically approximates the other. We
prove only one direction, namely⊢ esem1- esem2: τsem; the other is proven analogously.

Expanding the definitions, we need to show(k,w,esem1,esem2) ∈ En[[τsem]]. Note how
each term generates a fresh type nameαi in one step, resulting in a package value. Hence
all we need to do is come up with a worldw′ satisfying

• (k−1,w′) ⊒ (k,w),
• w′.σ1 = w.σ1,α1≈int andw′.σ2 = w.σ2,α2≈bool,
• (k−1,w′,pack〈α1,v1〉,pack〈α2,v2〉) ∈Vn[[τsem]].

wherevi is the term component ofesemi ’s implementation. We constructw′ by extending
w with mappings that establish the relation between the new type names:

R := {(k′′,w′′,vint,vbool) ∈ Atomval

k−1[int,bool] |

(vint,vbool) = (1,true)∨ (vint,vbool) = (0, false)}

r := (int,bool,R)

w′ := ((w.σ1,α1≈int),(w.σ2,α2≈bool),(w.η ,α 7→(α1,α2)),(⌊w.ρ⌋k−1,α 7→r))
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The first two conditions above are satisfied by construction.To show that the packages
are related we need to show the existence of anr ′ with (α1,α2, r ′) ∈ Tk−1[[Ω]]w′ such that
(k−2,⌊w′⌋,v1,v2) ∈ Vn[[τ ′sem]](α 7→r ′), whereτ ′sem= α × (α → α)× (α → bool). Since
αi = w′.η i(α), r ′ must be(int,bool,Vk−1[[α]]w′.ρ) by definition ofT[[Ω]]. Of course, we
definedw′ the way we did so that thisr ′ is exactlyr.

The proof of(k−2,⌊w′⌋,v1,v2) ∈Vn[[τ ′sem]](α 7→r) decomposes into three parts, follow-
ing the structure ofτ ′sem:

1. (k−2,⌊w′⌋,1,true) ∈Vn[[α]](α 7→r)
This holds becauseVn[[α]](α 7→r) = R.

2. (k−2,⌊w′⌋,λx.(1−x),λx.¬x) ∈Vn[[α → α]](α 7→r)

• Suppose we are given related arguments in a future world:(k′′,w′′,v′1,v
′
2) ∈

Vn[[α]](α 7→r) = R.
• Hence either(v′1,v

′
2) = (1,true) or (v′1,v

′
2) = (0, false).

• Consequently, 1−v′1 and¬v′2 will evaluate in one step, without effects, to values
again related byR.

• In other words,(k′′,w′′,1−v′1,¬v′2) ∈ En[[α]](α 7→r).

3. (k−2,⌊w′⌋,λx.(x 6= 0),λx.x) ∈Vn[[α → bool]](α 7→r)
Like in the previous part, the argumentsv′1 andv′2 will be related byR in some future
(k′′,w′′). Thereforev′1 6= 0 will reduce in one step without effects tov′2, which already
is a value. Because of the definition of the logical relation at typebool, this implies
(k′′,w′′,v′1 6= 0,v′2) ∈ En[[bool]](α 7→r).

Partly Benign Effects (Repeatability). When side effects are introduced into a pure
language, they often falsify various equational laws concerning repeatability and order
independence of computations. In this section, we offer some evidence that the effect
of dynamic type generation is partlybenignin that it does not invalidate some of these
equational laws.

Consider the following functions (whereτ is arbitrary but closed):

v1 := λx:(unit → τ). let x′ = x() in x()

v2 := λx:(unit → τ). x()

The only difference betweenv1 and v2 is whether the argumentx is applied once or
twice. Intuitively, eitherx() diverges, in which case both programs diverge, or else the
first application ofx terminates, in which case so should the second. A detailed formal
proof ofv1 andv2’s equivalence is given in Appendix B.

Partly Benign Effects (Order Independence).Now consider the following functions:

v′1 := λx:(unit → τ).λy:(unit → τ ′). lety′ = y() in 〈x(),y′〉
v′2 := λx:(unit → τ).λy:(unit → τ ′).〈x(),y()〉

The only difference betweenv′1 and v′2 is the order in which they call their argument
callbacksx andy. Those calls may both result in the generation of fresh type names, but
the order in which the names are generated should not matter.Again, a formal proof of
equivalence can be found in Appendix B.
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However, as we shall see in the example ofe′1 ande′2 in the next section, our G language
doesnot enjoy referential transparency. This is to be expected, of course, sincenew is an
effectful operation and (in-)equality of type names is observable in the language.

5 Wrapping

We have seen that parametricity can be re-established in G byintroducing name generation
in the right place. But what is the “right place” in general? That is, given an arbritrary
expressione with polymorphic typeτe, how can wesystematicallytransform it into an
expressione′ of the same typeτe that is parametric?

One obvious—but unfortunately bogus—idea is the following: transforme such that
every existentialintroductionand every universaleliminationcreates a fresh name for the
respective witness or instance type. Formally, apply the following rewrite rules toe:

pack〈τ,e〉 as τ ′  newα≈τ in pack〈α,e〉 as τ ′

eτ  newα≈τ in eα

Obviously, this would make every quantified type abstract, so that any cast that tries to
inspect it would fail.

Or would it? Perhaps surprisingly, the answer is no. To see why, consider the following
expressions of type(∃α.τ ′)× (∃α.τ ′):

e1 := letx = pack〈τ,v〉 in 〈x,x〉
e2 := 〈pack〈τ,v〉,pack 〈τ,v〉〉

They are clearly equivalent in a parametric language (and infact they are even equivalent
in G). Yet rewriting yields:

e′1 := letx = (newα≈τ in pack〈α,v〉) in 〈x,x〉
e′2 := 〈newα≈τ in pack〈α,v〉,newα≈τ in pack〈α,v〉〉

The resulting expressions arenot equivalent anymore, because they perform different ef-
fects. Here is one distinguishing context:

let p = [ ] inunpack〈α1,x1〉 = p.1 in

unpack〈α2,x2〉 = p.2 in equal?α1 α2

Although the representation typeτ is not disclosed as such,sharing between the two
abstract types ine′1 is. In a parametric language, that would not be possible.

In order to introduce effects uniformly, and to hide internal sharing, the transformation
we are looking for needs to be defined on the structure of types, not terms. Roughly, for
each quantifier occurring inτe we need to generate one fresh type name. That is, instead of
transforminge itself, we simplywrap it with some expression that introduces the necessary
names at the boundary, by induction on the typeτe.

In fact, we can refine the problem further. When looking at a G expressione, what do
we actually mean by “making it parametric”? We can mean two different things: either
ensuring thate behavesparametrically, or dually, that any contexttreats eparametrically.
In the former case, we are protecting thecontextagainste, in the latter we protecteagainst
malicious contexts. The latter is what is sometimes referred to asabstraction safety.
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Wr±α
def
= λx:α.x

Wr±b
def
= λx:b.x

Wr±τ1×τ2

def
= λx:(τ1× τ2).〈Wr±τ1

(x.1),Wr±τ2
(x.2)〉

Wr±τ1→τ2

def
= λx:(τ1 → τ2).λx1:τ1.Wr±τ2

(x(Wr∓τ1
x1))

Wr±∀α .τ
def
= λx:(∀α.τ).Λα.new∓ α in Wr±τ (xα)

Wr±∃α .τ
def
= λx:(∃α.τ).unpack〈α,x′〉=x in

new±α in pack〈α,Wr±τ x′〉 as ∃α.τ
new+ α in e

def
= new α ′≈α in e[α ′/α]

new−α in e
def
= e

Fig. 4. Wrapping for G

Figure 4 defines a pair of wrapping operators that correspondto these two dual re-
quirements: Wr+ protects an expressione : τe from beingusedin a non-parametric way,
by inserting fresh names for each existential quantifier. Dually, Wr− forcese to behave
parametrically by creating a fresh name for each polymorphic instantiation. The definitions
extend to other types in the usual functorial manner. Both definitions are interdependent,
because roles switch for function arguments. These operators are similar to the type-
directed translation that Sumii & Pierce (2007a) suggest for establishing type abstraction in
an untyped language (they propose the descriptive terms “firewall” for Wr+, and “sandbox”
for Wr−). However, their use of dynamic sealing instead of type generation results in the
insertion of runtime coercions to seal/unseal each individual value of abstract type, while
our wrapping leaves such values alone.

Lemma 24
If ∆ ⊢ τ, then∆;ε ⊢ Wr±τ : τ → τ.

Given these operators, we can go back to our semaphore example: esem1 can now be
obtained as Wr+τsemesem(modulo some harmlessη-expansions). This generalizes to other
ADTs: wrapping their implementations positively will guarantee abstraction by “making
them parametric”. We prove that in the next section.

Positive wrapping at existential type is reminiscent ofmodule sealing(or opaque sig-
nature ascription) in ML-style module languages. If we viewe as a module and its type
τe as a signature, then Wr+

τe
e corresponds to the sealing operatione :> τe. While module

sealing typically only performs static abstraction, wrapping provides the dynamic equiva-
lent (Rossberg, 2008). In fact, positive wrapping is precisely how sealing is implemented in
Alice ML (Rossberget al., 2004), where the module language is non-parametric otherwise.

The correspondence to module sealing motivates our treatment of existential types.
Notice that Wr+ causes a fresh type name to be created only once for each existentially
quantified type—that is, corresponding to each existentialintroduction. Another option
would be to generate type names with each existentialelimination. In fact, such a semantics
would arise naturally were we to use a Church encoding of existentials in conjunction with
our wrapping for universals. However, in such a semantics, unpacking an existential value
twice would have the effect of producing two distinct abstract types. While this corresponds
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Tπ
n [[Ω]]w

def
= {(τ1,τ2,(w.σ∗

1(τ1),w.σ∗
2 (τ2),R)) |

ftv(τi) ⊆ dom(w.σi)∧R∈ Reln[w.σ∗
1(τ1),w.σ∗

2(τ2)]}

(everything else as in Figure 3)

Fig. 5. Parametric Logical Relation

intuitively to the “generativity” ofunpack in System F, it is undesirable in the context of
dynamic, first-class modules. In particular, in order for anabstract typet defined by some
dynamic module M to have some permanent identity (so that it can be referenced by other
dynamic modules), it is important that each unpacking of M yields a handle to the same
name fort. (See Rossberg’s thesis (2007) for illustrative examples.) Moreover, as we show
in the next section, our definition of wrapping is sufficient to ensure abstraction safety.

6 Parametric Reasoning

The logical relation developed in Section 4 enables us to donon-parametricreasoning
about equivalence of G programs. It also enables us to doparametricreasoning, but only
indirectly: we have to explicitly deal with the effects ofnew and to define worlds containing
relations between type names. It would be preferable if we were able to do parametric rea-
soning directly. For example, given two termse1 ande2 that do not use casts, and assuming
that the context does not do so either, we should be able to reason about equivalence ofe1

ande2 in a manner similar to what we do when reasoning about System F.

6.1 A Parametric Logical Relation

Thanks to the modular formulation of our logical relation inFigure 3, it is easy to modify
it so that it becomes parametric. All we need to do is swap out the definition ofT[[Ω]]w,
which relates types as data. Figure 5 gives an alternative definition that allows choosing
an arbitrary relation between arbitrary types. Everythingelse stays exactly the same. We
decorate the set ofparametric logical relationsthus obtained withπ (i.e., Vπ , Eπ , etc.) to
distinguish them from the original ones. Likewise, we write-π for the notion ofparamet-
ric logical approximationdefined as in Figure 3 but in terms of the parametric relations.
For clarity, we will refer to the original definition as thenon-parametriclogical relation.

This modification gives us a seemingly parametric definitionof logical approximation
for G terms. But what does that actuallymean? What is the relation between parametric and
non-parametric logical approximation and, ultimately,contextualapproximation? Since
the language is not parametric, clearly, parametrically equivalent terms generally are not
contextually equivalent.

The answer is given by the wrapping functions we defined in theprevious section. The
following theorem connects the two notions of logical relation and approximation that we
have introduced:

Theorem 25(Wrapping for-π)
1. If ⊢ e1-

π e2 : τ, then⊢ Wr+τ e1-Wr+τ e2 : τ.
2. If ⊢ e1- e2 : τ, then⊢ Wr−τ e1-

π Wr−τ e2 : τ.
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This theorem justifies the definition of the parametric logical relation. At the same time,
it can be read as a correctness result for the wrapping operators: it says that if we can
relate two terms using parametric reasoning, then the positive wrapping of the first term
contextually approximates the positive wrapping of the second. Dually, once any properly
related terms are wrapped negatively, they can safely be passed to any term that depends
on its context behaving parametrically.

Rather than giving the proof of Theorem 25 now, we will wait until Section 8.1 to derive
it as a corollary of a more general result (see Corollary 32).

The alert reader may wonder why this Wrapping Theorem only talks about closed terms.
First of all, simply allowing open terms would not be correct. For instance, it is easy to see
that we have

ε;x:(∀α.bool) ⊢ x bool-π x unit : bool

because the instantiations ofx will be parametric by definition. For- they may of course
be non-parametric (considerequal? unit being plugged in forx), hence

ε;x:(∀α.bool) ⊢ x bool- x unit : bool

doesnot hold. However, since Wr+
bool

is just the identity function, this is essentially what
the naive extension of the Wrapping theorem to open terms would tell us.

The solution to this (we conjecture) is to wrap all free valuevariables at the inverse
polarity, so that the theorem would look as follows:

1. If ∆;Γ ⊢ e1-
π e2 : τ, then∆;Γ ⊢ Wr+τ γ−Γ (e1)-Wr+τ γ−Γ (e2) : τ.

2. If ∆;Γ ⊢ e1- e2 : τ, then∆;Γ ⊢ Wr−τ γ+
Γ (e1)-

π Wr−τ γ+
Γ (e2) : τ.

Here the substitutionγ±Γ replaces each free variablex:τ by its wrapping Wr±τ x and could
be defined as follows:

γ±ε
def
= /0 γ±Γ,x:τ

def
= γ±Γ ,x7→(Wr±τ x)

Proving this theorem correct, however, is another matter. One problem is that if we attempt
to prove the above statement, after unfolding the definitionof logical approximation in
part (1), we are given some(δ1,δ2,ρ)∈D[[∆]]. To instantiate the assumption appropriately,
(δ1,δ2,ρ) needs to be inDπ [[∆]]. In part (2), the situation is the other way around. However,
D[[∆]] and Dπ [[∆]] are only equal if∆ does not contain components of the formα≈τ ′.
Another problem is that wrapped value substitutions—whicharise in the proof—are no
longervaluesubstitutions. All in all, we believe these problems can be solved, but we
leave the solution to future work.

Finally, what can we say about the content of the parametric relation? Obviously, it
cannot contain arbitrary non-parametric G terms—e.g.,Λα1.Λα2.cast α1 α2 is not even
related to itself inEπ . Apart from cast, however, the parametric relation is compatible
with all constructs. The corresponding compatibility proofs for the non-parametric relation
carry over. The only difference is that compatibility for EPACK and EINST become easier
to show. In the proof of the former, for instance, it is immediate that the witness relation
has the required form, becauseTπ [[Ω]] does not actually impose any restrictions.

Consequently, we obtain the following restricted form of the Fundamental Property:

Theorem 26(Fundamental Property for-π )
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If ∆;Γ ⊢ e : τ ande is cast-free, then∆;Γ ⊢ e-π e : τ.

In particular, this implies that any well-typed System F term is parametrically related to
itself. The relation will also contain terms withcast, but only if the use ofcast does not
violate parametricity. (We discuss this further in Section7.)

Along the same lines, we can show that our parametric logicalrelation is sound w.r.t.
contextual approximation,if the definition of the latter is limited to quantifying only over
cast-free contexts:

Theorem 27(Soundness of-π )
If ∆;Γ ⊢ e1-

π e2 : τ, then for anycast-freeC : (∆;Γ;τ) (σ ;ε;τ ′) with ⊢ σ :

σ ;C[e1]↓⇒ σ ;C[e2]↓

Proof
Analogous to the soundness proof for-. The difference is that-π is a precongruence only
w.r.t. cast-free contexts.

6.2 Examples

Semaphore.Consider our running example of the semaphore module again.Using the
parametric relation, we can prove that the two implementations are related without actually
reasoning about type generation. That latter aspect of the proof is covered once and for all
by the Wrapping Theorem.

Recall the two implementations, here given in unwrapped form:

τsem:= ∃α.α × (α → α)× (α → bool)

e′sem1:= pack〈int,〈1,λx: int .(1−x),λx: int .(x 6= 0)〉〉 as τsem

e′sem2:= pack〈bool,〈true,λx:bool .¬x,λx:bool .x〉〉 as τsem

We can prove⊢ e′sem1-
π e′sem2 : τsem using conventional parametric reasoning about

polymorphic terms,i.e., we immediately get to pick the relational interpretation ofthe
abstract type and don’t have to operate on worlds at all:

Proof
• Supposew0 ∈ Worldn and(k,w) = (n,w0).
• To show:(k,w,e′sem1,e

′
sem2) ∈Vπ

n [[∃α.τ]]

• Let R := {(k′,w′,va,vb) ∈ Atomk−1 | (va,vb) = (true,1)∨ (va,vb) = (false,0)} and
r := (int,bool,R), such that(int,bool, r) ∈ Tπ [[Ω]]w.

• It thus suffices to show(k′,w′,v1,v2) ∈Vπ
n [[α × (α → α)× (α → bool)]](α 7→r) for

any(k′,w′) = (k,w), wherev1 andv2 are the term components ofe′sem1ande′sem2,
respectively.

• This decomposes into the same three parts as in Section 4.4.

Now defineesem1= Wr+τseme′sem1 andesem2= Wr+τseme′sem2, which are semantically
equivalent (by some simple applications ofβ - andη-equivalence) to the original defini-
tions in Section 2.3. The Wrapping Theorem then tells us that⊢ esem1- esem2: τsem.
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A Free Theorem. We can use the parametric relation for proving free theorems(Wadler,
1989) in G. For example, for any⊢ g : ∀α.α → α in G it holds that Wr− g either diverges
for all possible argumentsτ and⊢ v : τ, or it returnsv in all cases.

Informally, we first apply the Fundamental Property for- to relateg to itself in E, then
transfer this toEπ for Wr− g using the Wrapping Theorem. From there the proof proceeds
in the usual way.

Formally, we have to strengthen the claim slightly: Supposeσ0 ⊢ v : ∀α.α → α. We
want to show that either

1. for all σ ⊇ σ0, τ, v′ with σ ⊢ v′ : τ, σ ;Wr−∀α .α→α v τ v′ ↑ , or
2. for allσ ⊇σ0, τ, v′ with σ ⊢ v′ : τ, there isσ ′ such thatσ ;Wr−∀α .α→α vτ v′ →֒∗ σ ′;v′.

Assume (1) does not hold (otherwise we are done). In this casewe know that there is at least
one appropriateσ1, τ1, v1 such thatσ1;Wr− v τ1 v1 evaluates inj := j1 + 1+ j2+ 1+ j3
steps to someσ ′′′

1 ;v′1:

σ1;Wr− v τ1 v1

→֒ j1 σ ′
1;(Λα.e1) τ1 v1

→֒1 σ ′
1;e1[τ1/α] v1

→֒ j2 σ ′′
1 ;(λx:τ ′1.e

′
1) v1

→֒1 σ ′′
1 ;e′1[v1/x]

→֒ j3 σ ′′′
1 ;v′1

We now show that this implies that anyσ2;Wr− v τ2 v2 will indeed evaluate toσ ′
2;v2 (for

someσ ′
2):

• By the Fundamental Property,σ0;ε ⊢ v- v : ∀α.α → α.
• Constructw0 ∈ Worldj+2 and(δ1,δ2,ρ)∈ D j+2[[σ0]]w0 in the same manner as in the

proof of Soundness (Theorem 23) except thatw0.σ1 = σ1 andw0.σ2 = σ2.
• Instantiatingσ0;ε ⊢ v- v : ∀α.α → α then yields

( j +1,⌊w0⌋,v,v) ∈Vn[[∀α.α → α]]ρ
• By Wrapping,( j +1,⌊w0⌋,Wr− v,Wr− v) ∈ Eπ

n [[∀α.α → α]]ρ .
• Consequently, there exists( j +1− j1,w′) ⊒ ( j +1,⌊w0⌋) such that

σ2;Wr− v τ2 v2 →֒∗ w′.σ2;(Λα.e2) τ2 v2

with w′.σ1 = σ ′
1 and( j +1− j1,w′,Λα.e1,Λα.e2) ∈Vπ

n [[∀α.α → α]]ρ .
• LetR:= {(k̂,ŵ, v̂1, v̂2)∈Atom j+1− j1 | v̂1 = v1∧ v̂2 = v2} andr := (σ∗

1 (τ1),σ∗
2 (τ2),R),

so(τ1,τ2, r) ∈ Tπ
j+1− j1

[[Ω]]w′.
• Instantiate( j +1− j1,w′,Λα.e1,Λα.e2) ∈Vπ

n [[∀α.α → α]]ρ to get
( j +1− j1−1,⌊w′⌋,e1[τ1/α],e2[τ2/α]) ∈ Eπ

n [[α → α]]ρ ,α 7→r.
• Consequently, there exists( j +1− j1−1− j2,w′′)⊒ ( j +1− j1−1,⌊w′⌋) such that

w′.σ2;e2[τ2/α] v2 →֒∗ w′′.σ2;(λx.e′2) v2

with w′′.σ1 = σ ′′
1 and( j +1− j1−1− j2,w′′,λx.e′1,λx.e′2) ∈Vπ

n [[α → α]]ρ ,α 7→r.
• Since( j + 1− j1 −1− j2 −1,⌊w′′⌋,v1,v2) ∈ R= Vπ

n [[α]]ρ ,α 7→r, we get( j + 1−
j1−1− j2−1,⌊w′′⌋,e′1[v1/x],e′2[v2/x]) ∈ Eπ

n [[α]]ρ ,α 7→r.
• Consequently, there exists(1,w′′′) ⊒ ( j +1− j1−1− j2−1,⌊w′′⌋) such that

w′′.σ2;e′2[v2/x] →֒∗ w′′′.σ2;v′2
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with w′′′.σ1 = σ ′′′
1 and(1,w′′′,v′1,v

′
2) ∈Vπ

n [[α]]ρ ,α 7→r = R.
• Hencev′1 = v1 andv′2 = v2 by construction ofR.

7 Syntactic vs. Semantic Parametricity

The primary motivation for our parametric relation in the previous section was to enable
more direct parametric reasoning about the result of (positively) wrapping System F terms.
However, it is also possible to use our parametric relation to reason about terms that are
syntactically, or intensionally, non-parametric (i.e., that usecast’s), so long as they are
semantically, orextensionally, parametric (i.e.,the use ofcast is not externally observable).

For example, consider the following two polymorphic functions of type∀α.τα (here, let
b2i = λx:bool. if x then 1 else 0):

τα := ∃β . (α ×α → β )× (β → α)× (β → α)

g1 := λ α.pack〈α ×α,〈λ p.p, λx.(x.1), λx.(x.2)〉〉 as τα
g2 := λ α.castτbool τα

(pack〈int,〈λ p:(bool×bool).b2i(p.1)+2×b2i(p.2),

λx:int.x mod 2 6= 0,

λx:int.x div 2 6= 0〉〉 as τbool)

(g1 α)

These two functions take a type argumentα and return a simple generic ADT for pairs
overα. But g2 is more clever about it and specializes the representation for α = bool. In
that case, it packs both components into the two least significant bits of a single integer.
For all other types,g2 falls back to the generic implementation fromg1.

Using the parametric relation, we will be able to show that⊢ Wr+ g1 ≤ Wr+ g2 : ∀α.τα .
One might find this surprising, sinceg2 is syntactically non-parametric, returning differ-
ent implementations for different instantiations of its type argument. However, since the
two possible implementationsg2 returns are extensionally equivalent to each other,g2 is
semantically indistinguishable from the syntactically parametricg1.

Formally: Assume thatτ1, τ2 are the types andRα ∈ Rel[τ1,τ2] is the relation the
context picks, parametrically, forα. If τ2 6= bool, the rest of the proof is straightforward.
Otherwise, we do not know anything aboutτ1 andRα , becauseτ1 andτ2 are related inTπ .
Nevertheless, we can construct a suitable relational interpretationRβ ∈ Rel[τ1×τ1, int] for
the typeβ :

Rβ := {(k,w,〈v,v′〉,0) | (k,w,v, false),(k,w,v′, false) ∈ Rα}

∪ {(k,w,〈v,v′〉,1) | (k,w,v,true),(k,w,v′, false) ∈ Rα}

∪ {(k,w,〈v,v′〉,2) | (k,w,v, false),(k,w,v′,true) ∈ Rα}

∪ {(k,w,〈v,v′〉,3) | (k,w,v,true),(k,w,v′,true) ∈ Rα}

As it turns out, we do not need to know much about the structureof Rα to defineRβ . What
we are relying on here is only the knowledge that all values inRα are well-typed, which is
built into our definition of Rel. From that we know that there can never be any other value
than true or false on the right side of the relationRα . Hence we can still enumerate all
possible cases to defineRβ , and do a respective case distinction when proving equivalence
of the projection operations.
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Interestingly, it seems that our proof relies critically onthe fact that our logical relations
are restricted to syntactically well-typed terms. Were we to lift this restriction, we would
be forced (it seems) to extend the definition ofRβ with a “junk” case, but the calls tob2i in
g2 would get stuck if applied to non-boolean values. We leave further investigation of this
observation to future work.

8 Polarized Logical Relations

The parametric relation is useful for proving parametricity properties about (the positive
wrappings of) G terms. However, it is all-or-nothing: it canonly be used to prove para-
metricity for terms that expect to betreatedparametrically and alsobehaveparametrically,
cf. the two dual aspects of parametricity described in Section 5. We might also be inter-
ested in proving representation independence for terms that do not behave parametrically
themselves (in either the syntactic or semantic sense considered in the previous section).
One situation where this might arise is if we want to show representation independence
for generic ADTs that (like the one in Section 7) return different results for different
instantiations of their type arguments, but where (unlike the one in Section 7) the difference
is not only syntactic but also semantic.

Here is a somewhat contrived example to illustrate the point. Consider the following two
polymorphic functions of type∀α.τα :

τα := ∃β . (α → β )× (β → α)

f1 := λ α.castτint τα (pack〈int,〈λx:int.x+1,λx:int.x〉〉 as τint)

(pack〈α,〈λx:α.x,λx:α.x〉〉 as τα )

f2 := λ α.castτint τα (pack〈int,〈λx:int.x,λx:int.x+1〉〉 as τint)

(pack〈α,〈λx:α.x,λx:α.x〉〉 as τα )

These functions take a type argumentα and return a simple ADTβ . Values of typeα can
be injected intoβ , and projected out again. However, both functions specialize the behavior
of this ADT for typeint—for integers, injectingn and projecting again will give back not
n, but rathern+1. This is true for both functions, but they implement it in a different way.

We want to prove that both implementations are equivalent under wrapping using a
form of parametric reasoning. However, we cannot do that using the parametric relation
from Section 6—since the functions do notbehaveparametrically (i.e., the package each
function returns when instantiated withint is semantically different from the one that it
returns for any other type instantiation), they will not be related inEπ .

To support that kind of reasoning, we need a more refined treatment of parametricity in
the logical relation. The idea is to separate the two aforementioned aspects of parametricity.
Consequently, we are going to have a pair of separate relations,E+ andE−. The former
enforces parametric usage, the latter parametric behavior.

Figure 6 gives the definition of these relations. We call thempolarized, because they
are mutually dependent and the polarity (+ or−) switches for contravariant positions,i.e.,
for function arguments and for universal quantifiers. Intuitively, in these places, term and
context switch roles.

Except for the consistent addition of polarities, the definition of the polarized rela-
tions again only represents a minor modification of the original one. We merely refine
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V±
n [[α]]ρ def

= ⌊ρ(α).R⌋n

V±
n [[b]]ρ def

= {(k,w,v,v) ∈ Atomn[b,b]}

V±
n [[τ × τ ′]]ρ def

= {(k,w,〈v1,v′1〉,〈v2,v′2〉) ∈ Atomn[ρ1(τ × τ ′),ρ2(τ × τ ′)] |
(k,w,v1,v2) ∈V±

n [[τ]]ρ ∧ (k,w,v′1,v
′
2) ∈V±

n [[τ ′]]ρ}
V±

n [[τ ′ → τ]]ρ def
= {(k,w,λx:τ1.e1,λx:τ2.e2) ∈ Atomn[ρ1(τ ′ → τ),ρ2(τ ′ → τ)] |

∀(k′,w′,v1,v2) ∈V∓
n [[τ ′]]ρ.(k′,w′) ⊒ (k,w) ⇒

(k′,w′,e1[v1/x],e2[v2/x]) ∈ E±
n [[τ]]ρ}

V±
n [[∀α.τ]]ρ def

= {(k,w,λα.e1,λα.e2) ∈ Atomn[ρ1(∀α.τ),ρ2(∀α.τ)] |
∀(k′,w′) ⊒ (k,w). ∀(τ1,τ2, r) ∈ T∓

k′ [[Ω]]w′.
(k′,w′,e1[τ1/α],e2[τ2/α]) ∈ ⊲E±

n [[τ]]ρ,α 7→r}

V±
n [[∃α.τ]]ρ def

= {(k,w,pack 〈τ1,v1〉,pack〈τ2,v2〉) ∈ Atomn[ρ1(∃α.τ),ρ2(∃α.τ)] |
∃r.(τ1,τ2, r) ∈ T±

k [[Ω]]w∧ (k,w,v1,v2) ∈ ⊲V±
n [[τ]]ρ,α 7→r}

E±
n [[τ]]ρ def

= {(k,w,e1,e2) ∈ Atomn[ρ1(τ),ρ2(τ)] |
∀ j < k. ∀σ1,v1.(w.σ1;e1 →֒ j σ1;v1) ⇒∃w′,v2.(k− j ,w′) ⊒ (k,w)∧
w′.σ1 = σ1∧ (w.σ2;e2 →֒∗ w′.σ2;v2)∧ (k− j ,w′,v1,v2) ∈V±

n [[τ]]ρ}

T+
n [[Ω]]w

def
= Tπ

n [[Ω]]w

T−
n [[Ω]]w

def
= Tn[[Ω]]w

Fig. 6. Polarized Logical Relations

the definition of the type relationT[[Ω]]w to distinguish polarity: in the positive case it
behaves parametrically (i.e., allowing an arbitrary relation) and in the negative case non-
parametrically (i.e., demandingr be thelogical relation at some type). Thus, existential
types are parametric inE+ but non-parametric inE−, and vice versa for universals.

In fact, all four relations can easily be formulated in a single unified definition indexed
by ι ::= ε |π |+ |− (with ε representing the original non-parametric relation). We refer the
interested reader to the first author’s master’s thesis for details (Neis, 2009).

8.1 Key Properties

The way in which polarities switch in the polarized relations mirrors what is going on in
the definition of wrapping. That of course is no accident, andwe can show the following
theorem that relates the polarized relations with the non-parametric and parametric ones
through uses of wrapping:

Theorem 28(Wrapping for-±)
1. If ⊢ e1-

+ e2 : τ, then⊢ Wr+τ e1-Wr+τ e2 : τ.
2. If ⊢ e1- e2 : τ, then⊢ Wr−τ e1-

− Wr−τ e2 : τ.
3. If ⊢ e1-

+ e2 : τ, then⊢ Wr−τ e1-
π Wr−τ e2 : τ.

4. If ⊢ e1-
π e2 : τ, then⊢ Wr+τ e1-

− Wr+τ e2 : τ.

Intuitively, the first property says that whenever two termsare related for parametricuses,
their positive wrappings will actually be related unconditionally, even in a “hostile” non-
parametric context—i.e.,positive wrapping enforces parametric use. By the second prop-
erty, when two terms are related unconditionally, their negative wrappings are related even
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E+

Eπ E

E−

eF ∈

eG∈
∋ eG

Wr− Wr+

Wr+ Wr−

Fig. 7. Relating the Relations

in contexts that expect them tobehaveparametrically—i.e., negative wrapping enforces
parametric behavior. Dually, the latter two properties characterize the effect of applying
positive and negative wrappings to positively-related terms in the reverse order. This is
probably best understood graphically: the labeled, outer arrows in Figure 7 summarize the
situation by showing how the two polarities of wrapping can take terms from one relation
to another (we explain the rest of the diagram in the remainder of this section).

To show this theorem, we prove the following more general lemma. Each subitem here
actually states two properties, which are obtained by first consistently ignoring the left su-
perscript of theXι1,ι2 notation in the whole statement, and then the right one. For instance,
(1a) states that the positive wrapping transports values fromVπ to E− and, independently,
fromV+ to Eε (that is, toE). Similarly, each proof actually represents two proofs simulta-
neously.

Lemma 29
Supposew0 ∈ Worldn, (δ1,δ2,ρ) ∈ Dπ

n [[∆]]w0, (k,w) = (n,w0), and∆ ⊢ τ.

1. (a) If (k,w,v1,v2) ∈Vπ ,+
n [[τ]]ρ , then(k,w,δ1(Wr+τ ) v1,δ2(Wr+τ ) v2) ∈ E−,ε

n [[τ]]ρ .
(b) If (k,w,e1,e2) ∈ Eπ ,+

n [[τ]]ρ , then(k,w,δ1(Wr+τ ) e1,δ2(Wr+τ ) e2) ∈ E−,ε
n [[τ]]ρ .

2. (a) If (k,w,v1,v2) ∈V+,ε
n [[τ]]ρ , then(k,w,δ1(Wr−τ ) v1,δ2(Wr−τ ) v2) ∈ Eπ ,−

n [[τ]]ρ .
(b) If (k,w,e1,e2) ∈ E+,ε

n [[τ]]ρ , then(k,w,δ1(Wr−τ ) e1,δ2(Wr−τ ) e2) ∈ Eπ ,−
n [[τ]]ρ .

The most interesting cases of the proof (given below) are existential types in the first part
and universal types in the second part, because that is wherethe wrapping actually has to
generate a fresh type. Technically, what happens in both cases is that we have some triple
(τ1,τ2, r) ∈ Tπ ,+[[Ω]]w′, but would like it—or something equivalent—to be inT−,ε [[Ω]]w′′,
i.e., T[[Ω]]w′′, wherew′′ must be some extension ofw′ that incorporates the new namesα1

andα2. What we do is choosew′′ such that it extendsw′ by a new semantic nameα that
is connected to the concrete namesα1 andα2 as well as their representation types, and is
interpreted by the relationr. Then we can use(α1,α2,(w′′.ρ1(α),w′′.ρ2(α),V[[α]]w′′.ρ)),
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which has the form required byT[[Ω]]w′′ and, sincew′′.ρ mapsα to r, carries the same
relation as(τ1,τ2, r).

Proof
By primary induction onn and secondary induction on the derivation of∆ ⊢ τ. Note that
δi only affects the type annotations (of function arguments and package types) inside the
wrapping function. We show a few representative cases:

1. (a) • Caseτ = τ ′ → τ ′′: vi = λx.ei

— To show:(k,w,δ1(λx.λx′.Wr+τ ′′ (x (Wr−τ ′ x′))) v1,

δ2(λx.λx′.Wr+τ ′′ (x (Wr−τ ′ x′))) v2) ∈ E−,ε
n [[τ ′ → τ ′′]]ρ

— Since
w.σi ;δi(λx.λx′.Wr+τ ′′ (x (Wr−τ ′ x′))) vi

→֒1 w.σi ;λx′.δi(Wr+τ ′′)(vi (δi(Wr−τ ′)x′))

it suffices to show(k−1,⌊w⌋,λx′.δ1(Wr+τ ′′)(v1 (δ1(Wr−τ ′)x′)),
λx′.δ2(Wr+τ ′′)(v2 (δ2(Wr−τ ′)x′))) ∈V−,ε

n [[τ ′ → τ ′′]]ρ .

— Suppose(k′,w′,v3,v4) ∈V+,ε
n [[τ ′]]ρ where(k′,w′) ⊒ (k−1,⌊w⌋).

— To show:(k′,w′,δ1(Wr+τ ′′)(v1 (δ1(Wr−τ ′)v3)),

δ2(Wr+τ ′′)(v2 (δ2(Wr−τ ′)v4)))) ∈ E−,ε
n [[τ ′′]]ρ

— So supposew′.σ1;δ1(Wr+τ ′′)(v1 (δ1(Wr−τ ′)v3)) terminates:

w′.σ1;δ1(Wr+τ ′′)(v1 (δ1(Wr−τ ′)v3))

→֒ j1 σ ′′
1 ;δ1(Wr+τ ′′)(v1 v′3)

→֒1 σ ′′
1 ;δ1(Wr+τ ′′)e1[v′3/x]

→֒ j2 σ1;v′1

and j1 +1+ j2 =: j < k′.

— By induction,(k′,w′,δ1(Wr−τ ′)v3,δ2(Wr−τ ′)v4) ∈ Eπ ,−
n [[τ ′]]ρ .

— This implies the existence of(k′− j1,w′′) ⊒ (k′,w′) such that

w′.σ2;δ2(Wr+τ ′′)(v2 (δ2(Wr−τ ′)v4)) →֒∗ w′′.σ2;δ2(Wr+τ ′′)(v2 v′4)

with w′′.σ1 = σ ′′
1 and(k′− j1,w′′,v′3,v

′
4) ∈Vπ ,−

n [[τ ′]]ρ .

— So by assumption and Closure Under World Extension,
(k′− j1−1,⌊w′′⌋,e1[v′3/x],e2[v′4/x]) ∈ Eπ ,+

n [[τ ′′]]ρ .

— By induction,
(k′− j1−1,⌊w′′⌋,δ1(Wr+τ ′′)e1[v′3/x],δ2(Wr+τ ′′)e2[v′4/x]) ∈ E−,ε

n [[τ ′′]]ρ .

— Hence there exists(k′− j,w′′′) ⊒ (k′− j1−1,⌊w′′⌋) such that

w′′.σ2;δ1(Wr+τ ′′)e2[v
′
4/x] →֒∗ w′′′.σ2;v′2

with w′′′.σ1 = σ1 and(k′− j,w′′′,v′1,v
′
2) ∈V−,ε

n [[τ ′′]]ρ .

• Caseτ = ∃α.τ ′: vi = pack 〈τi ,v′i〉

— To show:

(k,w,δ1(λx.unpack 〈α,x′〉=x in new α≈α in pack 〈α,Wr+τ ′ x′〉) v1,

δ2(λx.unpack 〈α,x′〉=x in new α≈α in pack 〈α,Wr+τ ′ x′〉) v2)

∈ E−,ε
n [[∃α.τ ′]]ρ
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— So suppose the first configuration terminates:

w.σ1;δ1(λx.unpack 〈α,x′〉=x in new α≈α in pack 〈α,Wr+τ ′ x′〉) v1

→֒1 w.σ1;unpack 〈α,x′〉=v1 in new α≈α in pack 〈α,δ1(Wr+τ ′)x′〉
→֒1 w.σ1;new α≈τ1 in pack 〈α,δ1(Wr+τ ′)v′1〉
→֒1 w.σ1,α1≈τ1;pack 〈α1,δ ′

1(Wr+τ ′)v′1〉
→֒ j ′ σ1;pack 〈α1,v′′1〉

where 3+ j ′ =: j < k andδ ′
1 := δ1,α 7→α1

— Note that

w.σ2;δ2(λx.unpack 〈α,x′〉=x in new α≈α in pack 〈α,Wr+τ ′ x′〉) v2

→֒1 w.σ2;unpack 〈α,x′〉=v2 in new α≈α in pack 〈α,δ2(Wr+τ ′)x′〉
→֒1 w.σ2;new α≈τ2 in pack 〈α,δ2(Wr+τ ′)v′2〉
→֒1 w.σ2,α2≈τ2;pack 〈α2,δ ′

2(Wr+τ ′)v′2〉

whereδ ′
2 := δ2,α 7→α2

— By assumption we know(k′,w′,v′1,v
′
2) ∈ Vπ ,+

n [[τ ′]]ρ ,α 7→r for somer
with (τ1,τ2, r) ∈ Tπ ,+

k [[Ω]]w and any(k′,w′) = (k,w).

— Letwα := ((w.σ1,α1≈τ1),(w.σ2,α2≈τ2),

(w.η ,α 7→(α1,α2)),⌊w.ρ ,α 7→r⌋k−2), so(k−2,wα) = (k,w).

— Hence(k−2,wα ,v′1,v
′
2) ∈Vπ ,+

n [[τ ′]]ρ ,α 7→r.

— By Closure Under World Extension,
(k− 3,⌊wα⌋,v′1,v

′
2) ∈ Vπ ,+

n [[τ ′]]ρ ,α 7→r and thus(k− 3,⌊wα⌋,v′1,v
′
2) ∈

Vπ ,+
n [[τ ′]]ρ ′ for ρ ′ := ⌊ρ⌋k−2,α 7→r ′.

— Let r ′ := (wα .ρ1(α),wα .ρ2(α),Vk−2[[α]]wα) = ⌊r⌋k−2,
so(α1,α2, r ′) ∈ T−,ε

k−2 [[Ω]]wα ⊆ Tπ
k−2[[Ω]]wα .

— Furthermore(δ1,δ2,⌊ρ⌋k−2) ∈ Dπ
k−2[[∆]]wα by Lemma 4, so

(δ ′
1,δ ′

2,ρ ′) ∈ Dπ
k−2[[∆,α]]wα .

— Hence induction yields
(k−3,⌊wα⌋,δ ′

1(Wr+τ ′)v′1,δ ′
2(Wr+τ ′)v′2) ∈ E−,ε

n [[τ ′]]ρ ′.

— Becausewα .σ1 = w.σ1,α1≈τ1, this implies the existence of(k− j,w′)⊒

(k−3,⌊wα⌋) such that

w.σ2,α2≈τ2;pack 〈α2,δ ′
2(Wr+τ ′)v′2〉 →֒

∗ w′.σ2;pack 〈α2,v
′′
2〉

with w′.σ1 = σ1 and(k− j,w′,v′′1,v
′′
2) ∈V−,ε

n [[τ ′]]ρ ′.

— By Closure Under World Extension,
(k′′,w′′,v′′1,v

′′
2) ∈V−,ε

n [[τ ′]]ρ ,α 7→⌊r ′⌋k− j for any(k′′,w′′) = (k− j,w′).

— Since(α1,α2,⌊r ′⌋k− j) ∈ T−,ε
k− j [[Ω]]w′ by Lemma 4,

(k− j,w′,pack 〈α1,v′′1〉 as δ1(τ),pack 〈α2,v′′2〉 as δ2(τ))∈V−,ε
n [[∃α.τ ′]]ρ .

(b) • Supposew.σ1;δ1(Wr+τ )e1 terminates:

w.σ1;δ1(Wr+τ )e1

→֒ j1 σ ′
1;δ1(Wr+τ )v1

→֒ j2 σ1;v′1
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and j1 + j2 =: j < k steps

• So by assumption there exists(k− j1,w′) ⊒ (k,w) such that

w.σ2;δ2(Wr+τ )e2 →֒∗ w′.σ2;δ2(Wr+τ )v2

with w′.σ1 = σ ′
1 and(k− j1,w′,v1,v2) ∈Vπ ,+

n [[τ]]ρ .

• By part (a),(k− j1,w′,δ1(Wr+τ )v1,δ2(Wr+τ )v2) ∈ E−,ε
n [[τ]]ρ .

• Consequently, there exists(k− j,w′′) ⊒ (k− j1,w′) such that

w′.σ2;δ2(Wr+τ )v2 →֒∗ w′′.σ2;v′2

with w′′.σ1 = σ1 and(k− j,w′′,v′1,v
′
2) ∈V−,ε

n [[τ]]ρ .
2. (a) • Caseτ = ∃α.τ ′: vi = pack 〈τi ,v′i〉

— To show:(k,w,δ1(λx.unpack 〈α,x′〉=x in pack 〈α,Wr−τ ′ x′〉) v1,

δ2(λx.unpack 〈α,x′〉=x in pack 〈α,Wr−τ ′ x′〉) v2) ∈ Eπ ,−
n [[∃α.τ ′]]ρ

— So supposew.σ1;δ1(λx.unpack 〈α,x′〉=x in pack 〈α,Wr−τ ′ x′〉) v1 termi-
nates:

w.σ1;δ1(λx.unpack 〈α,x′〉=x in pack 〈α,Wr−τ ′ x′〉) v1

→֒1 w.σ1;unpack 〈α,x′〉=v1 in pack 〈α,δ1(Wr−τ ′)x′〉
→֒1 w.σ1;pack 〈τ1,δ ′

1(Wr−τ ′)v′1〉
→֒ j ′ σ1;pack 〈τ1,v′′1〉

where 2+ j ′ =: j < k andδ ′
1 := δ1,α 7→τ1

— Note that

w.σ2;δ2(λx.unpack 〈α,x′〉=x in pack 〈α,Wr−τ ′ x′〉) v2

→֒1 w.σ2;unpack 〈α,x′〉=v2 in pack 〈α,δ2(Wr−τ ′)x′〉
→֒1 w.σ2;pack 〈τ2,δ ′

2(Wr−τ ′)v′2〉

whereδ ′
2 := δ2,α 7→τ2

— By assumption we know(k−2,⌊w⌋,v′1,v
′
2) ∈V+,ε

n [[τ ′]]ρ ,α 7→r for some
r with (τ1,τ2, r) ∈ T+,ε

k [[Ω]]w⊆ Tπ
k [[Ω]]w.

— Furthermore(δ1,δ2,⌊ρ⌋) ∈ Dπ
k [[∆]]w by Lemma 4, and therefore we get

(δ ′
1,δ

′
2,(⌊ρ⌋,α 7→r)) ∈ Dπ

k [[∆,α]]w.

— Hence induction yields
(k−2,⌊w⌋,δ ′

1(Wr−τ ′)v′1,δ ′
2(Wr−τ ′)v′2) ∈ Eπ ,−

n [[τ ′]]⌊ρ⌋k,α 7→r.

— Consequently, there exists(k− j,w′) ⊒ (k−2,⌊w⌋) such that

w.σ2;pack 〈τ2,δ ′
2(Wr−τ ′)v′2〉 →֒

∗ w′.σ2;pack 〈τ2,v
′′
2〉

with w′.σ1 = σ1 and(k−1− j,w′,v′′1,v
′′
2) ∈Vπ ,−

n [[τ ′]]⌊ρ⌋k,α 7→r.

— For any(k′′,w′′)= (k− j,w′), we get(k′′,w′′,v′′1,v
′′
2)∈Vπ ,−

n [[τ ′]]ρ ,α 7→⌊r⌋
by Closure Under World Extension.

— Since(τ1,τ2,⌊r⌋) ∈ Tπ ,−
k− j [[Ω]]w′ Lemma 4, this implies

(k− j,w′,pack 〈τ1,v′′1〉,pack 〈τ2,v′′2〉) ∈Vπ ,−
n [[∃α.τ ′]]ρ .

(b) Symmetric to (1b).
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Corollary 30(aka Theorem 28)
1. If ⊢ e1 -

π ,+ e2 : τ, then⊢ Wr+ e1-
−,ε Wr+ e2 : τ.

2. If ⊢ e1 -
+,ε e2 : τ, then⊢ Wr− e1 -

π ,− Wr− e2 : τ.

Moreover, we can show that the inverse directions of these implications require no
wrapping at all:

Theorem 31(Inclusion for-±)
1. If ⊢ e1 - e2 : τ or ⊢ e1 -

π e2 : τ, then⊢ e1-
+ e2 : τ.

2. If ⊢ e1 -
− e2 : τ, then⊢ e1- e2 : τ and⊢ e1-

π e2 : τ.

This theorem can equivalently be stated asE− ⊆E⊆E+ andE−⊆Eπ ⊆E+. In Figure 7, it
is depicted by the unlabeled arrows between different relations, which represent inclusion.

Corollary 32(aka Theorem 25)
1. If ⊢ e1 -

π e2 : τ, then⊢ Wr+ e1-Wr+ e2 : τ.
2. If ⊢ e1 - e2 : τ, then⊢ Wr− e1 -

π Wr− e2 : τ.

Proof
Follows immediately from Theorem 28 and Theorem 31.

Similarly, the following follows from Theorem 31 together with the Fundamental Prop-
erty of-:

Corollary 33(Fundamental Property of-+)
If ⊢ e : τ andw∈ Worldk, then(k,w,e,e) ∈ E+

k+1[[τ]].

Interestingly, compatibility does not hold for-± (consider the polarities in the rule for
application), which has the consequence that we cannot showCorollary 33 directly. For a
similar reason, we cannot show any such property forE− at all.

The∈-operators in Figure 7 sum up the fundamental properties forthe respective rela-
tions,i.e.,which class of terms (G terms or F terms) are included in whichrelation.

LR-Substitution does not hold for the polarized relations.Consider the case whereτ =

α →α. Then, for instance,V+
n [[τ]]ρ ,α 7→(ρ1(τ ′),ρ2(τ ′),V+

n [[τ ′]]ρ) tells us something about
how its elements behave when applied to arguments out ofV+

n [[τ ′]]ρ . V+
n [[τ[τ ′/α]]]ρ , on

the other hand, only tells us something about how its elements behave when applied to
arguments out ofV−

n [[τ ′]]ρ .

8.2 Example

Getting back to our motivating example from the beginning ofthe section, it is essentially
straightforward to prove that⊢ f1 -+ f2 : ∀α.τα . The proof proceeds as usual, except that
we have to make a case distinction when we want to show that thefunction bodies are
related inE+. At that point, we are given a triple(τ1,τ2, r) ∈ T−[[Ω]]w.

If τ1 = int, then we know from the definition ofT− thatτ2 = int, too. We hence know that
both sides will evaluate to the specialized version of the ADT. Since we are inE+, we get to
pick some(τ ′1,τ ′2, r ′)∈T+[[Ω]]was the interpretation ofβ , where the choice ofr ′ is up to us.
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Types τ ::= . . . | µα.τ
Values v ::= . . . | roll v as τ
Terms e ::= . . . | roll eas τ | unroll e
Evaluation Ctxt’s E ::= . . . | roll E as τ | unroll E

∆;Γ ⊢ e : τ

· · ·

(EROLL)
∆;Γ ⊢ e : τ[µα.τ/α]

∆;Γ ⊢ roll eas µα.τ : µα.τ
(EUNROLL)

∆;Γ ⊢ e : µα.τ
∆;Γ ⊢ unroll e : τ[µα.τ/α]

· · ·
σ ;E[unroll(roll v as τ)] →֒ σ ;E[v]

Fig. 8. Syntax and Semantics of Gµ (excerpt)

The natural choice is to useτ ′1 = τ ′2 = int with the relationr ′ = (int, int,{(k,w,n+1,n) | n∈
Z}). The rest of the proof is then straightforward.

If τ1 6= int we similarly know thatτ2 6= int from the definition ofT−. Hence, both sides
use the default implementations, which are trivially related inE+, thanks to Corollary 33.

Finally, applying the Wrapping Theorem, we can conclude that ⊢ Wr+ f1 -Wr+ f2 :
∀α.τα , and hence by Soundness,⊢ Wr+ f1 ≤ Wr+ f2 : ∀α.τα .

Note how we relied on the knowledge thatτ1 andτ2 can only beint at the same time.
This holds for types related inT− but not inT+ or Tπ . If we had tried to do this proof in
Eπ , the typesτ1 andτ2 would have been related byTπ only, which would give us too little
information to proceed with the necessary case distinction.

9 Recursive Types

In this section, we consider an interesting and non-trivialextension of G with a ubiquitous
feature—namely,(iso-)recursive types. We call the extended language Gµ (see Figure 8).
The definition of contextual equivalence does not change (except there are more contexts),
but of course we must extend our logical relation, our definition of wrapping, and our
meta-theory, to handle recursive types.

9.1 Extending the Logical Relations

The step-indexing that we used in defining our logical relations makes it very easy to adapt
them to Gµ . There are two natural ways in which we could define the value relation at a
recursive type:

1. Vι
n [[µα.τ]]ρ def

= {(k,w, roll v1, roll v2) ∈ Atomn[. . .] |

(k,w,v1,v2) ∈ ⊲Vι
k [[τ]]ρ ,α 7→Vι

k [[µα.τ]]ρ}
2. Vι

n [[µα.τ]]ρ def
= {(k,w, roll v1, roll v2) ∈ Atomn[. . .] |

(k,w,v1,v2) ∈ ⊲Vι
k [[τ[µα.τ/α]]]ρ}
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For ι ∈ {ε,π}—i.e.,for the non-parametric and parametric forms of the logical relation—
the above two formulations are equivalent due to LR-Substitution. Unfortunately, though,
we do not have such a property for the polarized relation. In fact, for ι ∈ {+,−}, the
first definition wrongly records a fixed polarity forα. It is thus crucial that we choose
the second one; only then do all key properties continue to hold in Gµ . Adapting the
proofs of soundness, the fundamental property, and relatedlemmas from Section 4, to
Gµ is straightforward.

9.2 Extending the Wrapping

How can we upgrade the wrapping to account for recursive types? Given an argument of
typeµα.τ, the basic idea is to first unfold it to typeτ[µα.τ/α], then wrap it at that type,
and finally fold the result back to typeµα.τ. Of course, sinceτ[µα.τ/α] may be larger
thanµα.τ, a direct implementation of this idea will not result in a well-founded definition.

The solution is to use a fixed-point (definable in terms of recursive types, of course),
which gives us a handle on the wrapping function we are in the middle of defining. Figure 9
shows the new definition. We first index the wrapping by an environmentϕ that maps each
recursive type variableα to the appropriate wrapping and the corresponding syntactic type
(we writeϕval(α) for the former andϕ typ(α) for the latter). Roughly, the wrapping at type
µα.τ under environmentϕ is a recursive functionF , defined in terms of the wrapping at
τ under environmentϕ ,α 7→ (µα.τ,F). Since the bound variable of a recursive type may
occur in positions of different polarity, we actually need two mutually recursive functions
and then select the right one depending on the polarity. The cognoscenti will recognize
this as a polarized variant of the so-calledsyntactic projectionfunction associated with a
recursive type (Birkedal & Harper, 1999).

Note that the definition ofFϕ
µα .τ takes aunit argument merely for simplicity, so that

we may encode two mutually recursive functions in terms of a singlefix (whose encoding
appears in Section A.5). Note also that the environment onlyplays a role for recursive
types, and that for anyτ that does not involve recursive types, Wr±

τ /0 is the same as our old
wrapping Wr±τ from Section 5. Taking Wr±τ to be shorthand for Wr±τ /0, we can show that
our old Wrapping Theorems for G (Theorems 25 and 28) continueto hold for Gµ .

First of all, Lemma 24 still holds, but we can generalize it asfollows:

Lemma 34
If ∆,dom(ϕ) ⊢ τ and for allα ∈ dom(ϕ) both∆ ⊢ ϕ typ(α) and

∆;ε ⊢ ϕval(α) : unit → (ϕ typ(α) → ϕ typ(α))× (ϕ typ(α) → ϕ typ(α)),

then∆;ε ⊢ Wr±τ ϕ : ϕ typ(τ) → ϕ typ(τ).

The next is a substitution lemma for the wrapping. Takingτ ′ to be τ (which is how
it will be used), it says that wrapping at the unfolding of a recursive typeµα.τ (i.e., at
τ[µα.τ/α]), relative to some environmentϕ , is syntacticallythe same as “moving the
unfolding into the environment” and then wrapping atτ. This lemma is important for the
recursive type case in the Wrapping Theorem.

Lemma 35(WR-Substitution)
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Fϕ
µα .τ

def
= fix f (x′).〈λx:(µα.τ). roll Wr+τ (ϕ,α 7→(µα.τ, f ))(unroll x) as µα.τ,

λx:(µα.τ). roll Wr−τ (ϕ,α 7→(µα.τ, f ))(unroll x) as µα.τ〉
: unit → ((µα.τ) → (µα.τ))× ((µα.τ) → (µα.τ))

Wr+α ϕ def
= λx:ϕ typ(α).(ϕval(α) ()).1 x (if α ∈ dom(ϕ))

Wr−α ϕ def
= λx:ϕ typ(α).(ϕval(α) ()).2 x (if α ∈ dom(ϕ))

Wr±α ϕ def
= λx:α.x (if α /∈ dom(ϕ))

Wr±b ϕ def
= λx:b.x

Wr±τ1×τ2
ϕ def

= λx:(τ1× τ2).〈Wr±τ1
ϕ (x.1)),Wr±τ2

ϕ (x.2)〉

Wr±τ1→τ2
ϕ def

= λx:(τ1 → τ2).λx′:τ1.Wr±τ2
ϕ (x (Wr∓τ1

ϕ x′))

Wr±∀α .τ ϕ def
= λx:(∀α.τ).Λα.new∓ α in Wr±τ ϕ (x α)

Wr±∃α .τ ϕ def
= λx:(∃α.τ).unpack 〈α,x′〉=x in new± α in pack 〈α,Wr±τ ϕ x′〉 as ∃α.τ

Wr+µα .τ ϕ def
= λx:(µα.τ).(Fϕ

µα .τ ()).1 x

Wr−µα .τ ϕ def
= λx:(µα.τ).(Fϕ

µα .τ ()).2 x

Wr±τ
def
= Wr±τ /0

Fig. 9. Wrapping for Gµ

If ϕ ′ = ϕ ,α 7→(µα.τ,Fϕ
µα .τ ), then Wr±τ ′ ϕ

′ = Wr±τ ′[µα .τ/α ] ϕ .

Proof
By induction onτ ′.

The proof of the Wrapping Theorem for Gµ is obtained from the one for G by simply
extending the case analysis. Note that the wrapping theoremis stated for an empty envi-
ronmentϕ (recall that Wr±τ is just short for Wr±τ /0). This may seem not general enough at
first, because in the case whereτ = µα.τ ′ we need an induction hypothesis that talks about
wrapping relative to the non-empty environmentϕ := (α 7→(τ,F /0

τ )). This is exactly where
Lemma 35 comes in: it tells us that the terms involving Wr±

τ ′ ϕ that we are interested in
are the same as the terms involving Wr±

τ ′[τ/α ]
/0 that we know are related by the induction

hypothesis.

Proof
1. (a) Caseτ = µα.τ ′: vi = roll v′i

• To show:(k,w,δ1(λx.(F /0
τ ()).1x) v1,δ2(λx.(F /0

τ ()).1x) v2)∈E−,ε
n [[µα.τ ′]]ρ

• So supposew.σ1;δ1(λx.(F /0
τ ()).1 x) v1 terminates

w.σ1;δ1(λx.(F /0
τ ()).1 x) v1

→֒1 w.σ1;(δ1(F /0
τ ) ()).1 v1

→֒ jc w.σ1; roll δ1(Wr+τ ′(α 7→(τ,F /0
τ ))) (unroll v1)

→֒1 w.σ1; roll δ1(Wr+τ ′(α 7→(τ,F /0
τ ))) v′1

→֒ j ′ σ1; roll v′′1

and 1+ jc +1+ j ′ =: j < k.
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• Note that

w.σ2;δ2(λx.(F /0
τ ()).1 x) v2

→֒1 w.σ2;(δ2(F /0
τ ) ()).1 v2

→֒ jc w.σ2; roll δ2(Wr+τ ′(α 7→(τ,F /0
τ ))) (unroll v2)

→֒1 w.σ2; roll δ2(Wr+τ ′(α 7→(τ,F /0
τ ))) v′2

• By assumption we know(k− j,⌊w⌋,v′1,v
′
2) ∈Vπ ,+

k [[τ ′[τ/α]]]ρ .

• By induction,
(k− j,⌊w⌋,δ1(Wr+τ ′[τ/α ]

) v′1,δ2(Wr+τ ′[τ/α ]
) v′2) ∈ E−,ε

k [[τ ′[τ/α]]]ρ .

• By Lemma 35, Wr+τ ′[τ/α ] = Wr+τ ′(α 7→(τ,F /0
τ )).

• Consequently, there exists(k− j,w′) = (k− jc−1,⌊w⌋) such that

w.σ2; roll δ2(Wr+τ ′(α 7→(τ,F /0
τ ))) v′2 →֒∗ w′.σ2; roll v′′2

with w′.σ1 = σ1 and(k− j,w′,v′′1,v
′′
2) ∈V−,ε

k [[τ ′[τ/α]]]ρ .

• By Closure Under World Extension the latter implies
(k− j,w′, roll v′′1, roll v′′2) ∈V−,ε

n [[τ]]ρ .

(b) As before.
2. (a) Caseτ = µα.τ ′: symmetric to respective case of part (1)

(b) As before.

10 Towards Full Abstraction

The definition of the parametric relationEπ (including the extension for recursive types)
is largely very similar to that of a typical step-indexed logical relationEFµ for Fµ , i.e.,
System F extended with pairs, existentials and iso-recursive types (Ahmed, 2006). The
main difference is the presence of worlds, but they are not actually used in a particularly
interesting way inEπ . Therefore, one might expect that any two Fµ terms related by the
hypotheticalEFµ would also be related byEπ and vice versa.

However, this is not obvious: Gµ is more expressive than Fµ , in the sense that terms
in the parametric relation can contain non-trivial uses of casts (e.g.,the generic ADT for
pairs from Section 7), and there is no evident way to back-translate these terms into Fµ (as
would be needed for function arguments). That invalidates aproof approach like the one
taken by Ahmed & Blume (2008).

Ultimately, the property we would like to be able to show is that the embedding of Fµ

into Gµ by positive wrapping isfully abstract:

⊢ e1 ≡Fµ e2 : τ ⇔⊢ Wr+τ e1 ≡ Wr+τ e2 : τ

(The semantics of Fµ can be obtained from Gµ by restricting∆ to simple variable compo-
nents, ignoring all the rules related tocast andnew as well as the conversion rule ECONV,
and dropping the type store from the reduction relation. Contextual approximation then is
defined as for Gµ except that it does not mention a type store and the universally quantified
contexts must have type(∆;Γ;τ) (ε;ε;τ ′).) This equivalence is even stronger than the
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one about logical relatedness inEFµ andEπ , because- is only sound w.r.t. contextual
approximation, not complete.

Since Fµ is a fragment of Gµ , and Fµ contexts cannot observe any difference between
an Fµ term and its wrapping, the direction from right to left, calledequivalence reflection,
is not terribly hard to show.

Theorem 36(Equivalence Reflection)
If ∆;Γ ⊢Fµ e1 : τ and∆;Γ ⊢Fµ e2 : τ and∆;Γ ⊢ Wr+τ e1 ≡ Wr+τ e2 : τ,
then∆;Γ ⊢ e1 ≡Fµ e2 : τ.

We present its proof in the remainder of this section.
Unfortunately, it is not known to us whether the other direction, equivalence preserva-

tion, holds as well. We conjecture that it does, but are not aware of any suitable technique
to prove it.

Note that while equivalence reflection also holds for F and G—i.e., in the absence of
recursive types—equivalence preservation does not, because non-termination is encodable
in G but not in F. Here is a trivial example exploiting this:

e1 := λ f :(unit → unit). f ()

e2 := λ f :(unit → unit).()

Clearly,e1 ande2 are contextually equivalent in F. Wrapping basically leaves them unmod-
ified, because their type is simple. However,e1 ande2 are not contextually equivalent in G,
since a G context can apply them to a diverging function.

10.1 Equivalence Reflection

Assuming∆;Γ ⊢Fµ e1 : τ and∆;Γ ⊢Fµ e2 : τ, we want to show:

∆;Γ ⊢ Wr+τ e1 ≡Gµ Wr+τ e2 : τ ⇒ ∆;Γ ⊢ e1 ≡Fµ e2 : τ

We will show the contrapositive. Since Fµ is a fragment of Gµ , it suffices to show that
any contextC that can distinguishe1 and e2 in Fµ will also distinguish their positive
wrappings in Gµ . We do this in two steps. First, we prove thatC will distinguish theirsimple
wrappings(Lemma 40). The simple wrapping, Sp±

τ , whose definition is given in Figure 10,
is thenew-erasure of the proper wrapping, i.e., obtained by replacing anynewα≈τ ′ in e′

in Wr±τ by e′[τ ′/α]. In the terms of Birkedal & Harper (1999), it is precisely thesyntactic
projection function associated with the typeτ (hence Sp for “Syntactic projection”). Sub-
sequently, we prove that distinguishing the simple wrappings implies distinguishing the
proper wrappings (Lemma 46).

For the first part we actually show something stronger, namely the so-calledsyntactic
minimal invarianceproperty (Birkedal & Harper, 1999), which says that the syntactic
projection function at any type is contextually equivalentto the identity, and thus that any
terme is contextually equivalent in Gµ to its simple wrapping. We do this with the help of
our non-parametric logical relation, which is sound w.r.t.contextual approximation.

Lemma 37(SP-Substitution)
If ϕ ′ = ϕ ,α 7→(µα.τ,Gϕ

µα .τ ), then Sp±τ ′ ϕ
′ = Sp±τ ′[µα .τ/α ]

ϕ .
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Gϕ
µα .τ

def
= fix f (x′).〈λx:(µα.τ). roll Sp+τ (ϕ,α 7→(µα.τ, f ))(unroll x) as µα.τ,

λx:(µα.τ). roll Sp−τ (ϕ,α 7→(µα.τ, f ))(unroll x) as µα.τ〉
: unit → ((µα.τ) → (µα.τ))× ((µα.τ) → (µα.τ))

Sp+α ϕ def
= λx:ϕ typ(α).(ϕval(α) ()).1 x (if α ∈ dom(ϕ))

Sp−α ϕ def
= λx:ϕ typ(α).(ϕval(α) ()).2 x (if α ∈ dom(ϕ))

Sp±α ϕ def
= λx:α.x (if α /∈ dom(ϕ))

Sp±b ϕ def
= λx:b.x

Sp±τ1×τ2
ϕ def

= λx:(τ1× τ2).〈Sp±τ1
ϕ (x.1)),Sp±τ2

ϕ (x.2)〉

Sp±τ1→τ2
ϕ def

= λx:(τ1 → τ2).λx′:τ1.Sp±τ2
ϕ (x (Sp∓τ1

ϕ x′))

Sp±∀α .τ ϕ def
= λx:(∀α.τ).Λα.Sp±τ ϕ (x α)

Sp±∃α .τ ϕ def
= λx:(∃α.τ).unpack 〈α,x′〉=x in pack 〈α,Sp±τ ϕ x′〉 as ∃α.τ

Sp+µα .τ ϕ def
= λx:(µα.τ).(Gϕ

µα .τ ()).1 x

Sp−µα .τ ϕ def
= λx:(µα.τ).(Gϕ

µα .τ ()).2 x

Sp±τ
def
= Sp±τ /0

Fig. 10. Simple Wrapping for Gµ (new-erasure of the proper wrapping)

Lemma 38
Supposew0 ∈ Worldn, (δ1,δ2,ρ) ∈ Dn[[∆]]w0 and(k,w) = (n,w0) where∆ ⊢ τ.

1. If (k,w,v1,v2) ∈Vn[[τ]]ρ ,
then(k,w,v1,δ2(Sp±τ )v2) ∈ En[[τ]]ρ and(k,w,δ1(Sp±τ )v1,v2) ∈ En[[τ]]ρ .

2. If (k,w,e1,e2) ∈ En[[τ]]ρ ,
then(k,w,e1,δ2(Sp±τ )e2) ∈ En[[τ]]ρ and(k,w,δ1(Sp±τ )e1,e2) ∈ En[[τ]]ρ .

Proof
By primary induction onn and secondary induction on the derivation of∆ ⊢ τ.

Lemma 39
If ∆;Γ ⊢ e : τ, then∆;Γ ⊢ e≡ Sp±τ e : τ.

Proof
We show∆;Γ ⊢ e- Sp±τ e : τ. The proof of∆;Γ ⊢ Sp±τ e- e : τ is symmetric. The claim
then follows by Soundness.

• Supposew0 ∈ Worldn, (δ1,δ2,ρ) ∈ Dn[[∆]]w0, (k,γ1,γ2) ∈ Gn[[Γ]]ρ , and (k,w) =

(n,w0).
• By the Fundamental Property we know∆;Γ ⊢ e- e : τ.
• Instantiating this yields(k,w,δ1γ1(e),δ2γ2(e)) ∈ En[[τ]]ρ .
• By Lemma 38,(k,w,δ1γ1(e),δ2(Sp±τ )δ2γ2(e)) ∈ En[[τ]]ρ .
• Note thatδ2(Sp±τ )δ2γ2(e) = δ2γ2(Sp±τ e).

Lemma 40
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1. If ∆;Γ ⊢ e : τ, ⊢C : (∆;Γ;τ) ; (ε;ε;τ ′), andε;C[e]↓, thenε;C[Sp±τ e]↓.
2. If ∆;Γ ⊢ e : τ, ⊢C : (∆;Γ;τ) ; (ε;ε;τ ′), andε;C[e]↑, thenε;C[Sp±τ e]↑.

Proof
Follows from Lemma 39.

The second part (Lemma 46) can be proven in a more direct way. Intuitively, the property
holds because the only difference between the reduction ofC[Sp±τ e] and the reduction of
C[Wr±τ e] is that during the latter fresh type names are being generated and substituted.
Since we assumeC to be cast-free, there is no way for these type names to affect the
reduction and thus the termination behavior. We will only sketch the proof and not give
formal details, as this would be a very tedious job here and not reveal any insights.

The idea is to use a simulation that relates a terme1 to a terme2 iff e1 is thenew-erasure
of e2, i.e., e1 is obtained frome2 by dropping all occurences ofnew. Thus, in particular,
the simulation relates the simple wrapping of a term to its proper wrapping.

The definition of Erase, thenew-erasure, is trivial. Its only interesting case is

Erase(new α≈τ in e)
def
= Erase(e[τ/α]).

For all the other language constructs, the definition just recurses on the subterms. It is easy
to see that Erase satisfies standard congruence and substitution properties:

Lemma 41
If e1 = Erase(e2) andC is new-free, thenC[e1] = Erase(C[e2]).

Lemma 42
1. If e1 = Erase(e2) ande′1 = Erase(e′2), thene1[e′1/x] = Erase(e2[e′2/x]).
2. If e1 = Erase(e2), thene1[τ/α] = Erase(e2[τ/α]).

The simulation argument is the following (where→֒+ denotes a reduction sequence with
at least one reduction):

Lemma 43
If e1 is cast-free ande1 = σ∗

2 (Erase(e2)) andσ1;e1 →֒ σ1;e′1, then there areσ ′
2 ande′2 with

e′1 = σ ′∗
2 (Erase(e′2)) cast-free andσ2;e2 →֒+ σ ′

2;e′2.

This already yields the second part of Lemma 46. For the first part we need one more
lemma and an easy induction.

Lemma 44
If v = σ∗

2 (Erase(e)), thenσ2;e↓.

Lemma 45
If e1 is cast-free ande1 = σ∗

2 (Erase(e2)) andσ1;e1↓, thenσ2;e2↓.

Proof
By induction on the length of the reduction sequence, using Lemmas 44 and 43.

Lemma 46
SupposeeandC are bothcast- andnew-free.

1. If ∆;Γ ⊢ e : τ, ⊢C : (∆;Γ;τ) ; (ε;ε;τ ′) andε;C[Sp±τ e]↓, thenε;C[Wr±τ e]↓.
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2. If ∆;Γ ⊢ e : τ, ⊢C : (∆;Γ;τ) ; (ε;ε;τ ′) andε;C[Sp±τ e]↑, thenε;C[Wr±τ e]↑.

Proof
SinceC[Sp±τ e] = Erase(C[Wr±τ e]), the first part follows from Lemma 45 and the second
from Lemma 43.

Finally, we can prove the actual theorem:

Theorem 47(Equivalence Reflection)
If ∆;Γ ⊢Fµ e1 : τ, ∆;Γ ⊢Fµ e2 : τ and∆;Γ ⊢ Wr±τ e1 ≡ Wr±τ e2 : τ, then∆;Γ ⊢ e1 ≡Fµ e2 : τ.

Proof
Assume that∆;Γ⊢e1 ≡Fµ e2 : τ does not hold,i.e., e1 ande2 are not contextually equivalent
in Fµ . Then there is an Fµ -contextC that can tell them apart: say,C[e1] ↓ andC[e2] ↑.
Note thatC also is a valid G context. It is easy to see thatC will distinguish e1 ande2

in G, too: ε;C[e1] ↓ and ε;C[e2] ↑. Using Lemma 40 and then Lemma 46, this implies
thatC also distinguishes their wrappings:ε;C[Wr±τ e1]↓ andε;C[Wr±τ e2]↑. Consequently,
∆;Γ ⊢ Wr±τ e1 ≡ Wr±τ e2 : τ does not hold either.

11 Incompleteness of the Logical Relation

While our logical relation for Gµ is sound w.r.t. contextual approximation, it is not com-
plete. There are at least two reasons why.

First of all, we have defined our logical relation in such a wayas to model a fairly general
notion of non-parametricity, not tied specifically to thecast operatorper se. Consequently,
we conjecture that our logical relation (modulo potential minor tweaks) would generalize
to soundly model a language with atypecase mechanism instead of acast operator. (As
explained in the introduction, we have chosen to studycast because it is simpler yet
still interesting.) However,typecase is strictly more powerful thancast, in the sense that
typecase is capable of distinguishing between more programs. In particular, withtypecase

one canpattern-matchon an abstract typeα, which one can not always do withcast
(see the example below). Thus, there are programs that we cannot prove equivalent in
our model—because they are not contextually equivalent in the presence oftypecase—but
that (we conjecture)are contextually equivalent in the presence ofcast, and this clearly
leads our model to be incomplete w.r.t. Gµ .

Consider the following example:

τ := ∃β . (int× int → β )× (β → int)× (β → int)

e1 := newα≈int in pack〈α ×α,〈λ p.p, λx.(x.1), λx.(x.2)〉〉 as τ
e2 := newα≈(int× int) in pack〈α,〈λ p.p, λx.(x.1), λx.(x.2)〉〉 as τ

We strongly conjecture thate1 ande2 are contextually equivalent in Gµ : Although the
type components of the existential packages returned bye1 ande2—namely,α ×α andα,
respectively—are structurally different, there seems to be no way to observe this usingcast.
Specifically, after unpacking the existential and binding aname (say,β ) for the existential
type variable, there is no way for a client ofe1 to castβ to a pair type because, although
β = α ×α dynamically, the type nameα is not in the client’s static scope.
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It is easy to see, however, thate1 and e2 arenot equivalent according to our logical
relation: Suppose they are,i.e., ⊢ e1 - e2 : τ (and the other way around). Instantiating
this with a sufficiently large numberk+1 and the empty worldw yields(k,⌊w⌋,e1,e2) ∈

Ek+1[[τ]]. Now, since obviouslyε;e1 →֒1 α1≈int;v1[α1/α] (wherev1 is the body ofe1), we
know that there isw′ such thatε;e2 →֒∗ w′.σ2;v2 and(k−1,w′,v1,v′2) ∈Vk+1[[τ]]. Clearly,
v′2 must bev2[α2/α], wherev2 is the body ofe2 andα2 is some type name. Recall that the
(non-parametric) logical relation at existential type requires the type components of the
two package values to be structurally equal. Clearly, this is not the case here, and so we
have a contradiction.

Of course, if the language had atypecase operator, the situation would be different,
because a client could easily distinguishe1 ande2 by pattern-matching the abstract type
β against a pair type constructor—the pattern match would succeed fore1 but fail for e2.
Thus, by demanding that the type components of logically related existential packages be
structurally equal, our model appears to be a closer fit for a language withtypecase (in
which an adversarial context can perform complete structural decomposition of abstract
type variables) than for one withcast (in which an adversarial context can only test for
equality against “known” types). This is fine from our perspective since our goal was never
to tailor our model to the peculiarities of thecast construct. Moreover, even if we were
interested in doing so, it is far from obvious to us how to go about it.

Our logical relation is also incomplete w.r.t. contextual approximation for reasons that
have nothing to do with the non-parametric features of the language. In particular, while
we have shown in this paper how our logical relation enables one to use traditional para-
metric reasoning when reasoning about wrapped programs, there are weird yet well-known
examples—see, for instance, Pitts (2005)—of equivalencesbetween existential packages
that are not provable by direct use of logical relations. (Specifically, in these examples,
there is no way to show the existential packages logically related because there is no way
of choosing a relational interpretation of the abstract type such that the ADT operations
are logically related, yet the existential packages are nevertheless contextually equivalent.)
Our logical relation cannot be used to directly prove those equivalences either.

A well-known technique for achieving completeness is to usebiorthogonality, otherwise
known as⊤⊤-closure(Pitts & Stark, 1998; Pitts, 2005). We believe it would not bedifficult
to incorporate biorthogonality into our present logical relations in order to render them
complete. However, the completeness guaranteed by biorthogonality does not translate
into a practical technique for establishing weird equivalences like the ones mentioned
above. Moreover, as Benton & Tabareau (2009) have observed,biorthogonality also makes
the logical relation (as a practical proof technique) sensitive to order of evaluation, so
that it would no longer be obvious how to use it to prove equivalences like our “order
independence” result from Section 4.4.

12 Related Work

Type Generation vs. Other Forms of Data Abstraction.Traditionally, authors have
distinguished between two complementary forms of data abstraction, sometimes dubbed
thestaticand thedynamicapproach (Matthews & Ahmed, 2008). The former is tied to the
type system and relies on parametricity (especially for existential types) to hide an ADT’s
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representation from clients (Mitchell & Plotkin, 1988). The latter approach is typically
employed in untyped languages, which do not have the abilityto place static restrictions
on clients. Consequently, data hiding has to be enforced on the level of individual values.
Toward that end, languages provide means for generating unique names and using them as
keysfor dynamically sealingvalues. A value sealed by a given key can only be inspected
by principals that have access to the key (Sumii & Pierce, 2007a).

Dynamic type generation as we employ it (Rossberg, 2003; Vytiniotis et al., 2005;
Rossberg, 2008) can be seen as a middle ground, because it bears resemblance to both
approaches. As in the dynamic approach, we cannot rely on parametricity and instead
generate dynamic names to protect abstractions. However, these are type-level names, not
term-level names, and they only “seal” type information. Inparticular, individual values
of abstract type are still directly represented by the underlying representation type, so that
crossing abstraction boundaries has no runtime cost. In that sense, we are closer to the
static approach.

Another approach to reconciling type abstraction and type analysis has been proposed by
Washburn & Weirich (2005). They introduce a type system thattracks information flow for
terms and types-as-data. By distinguishing security levels, the type system can statically
prevent unauthorized inspection of types by clients.

Multi-Language Interoperation. The closest related work to ours is that of Matthews &
Ahmed (2008). They describe a pair of mutually recursive logical relations that deal with
the interoperation between a typed language (“ML”) and an untyped language (“Scheme”).
Unlike in G, parametric behavior is hard-wired into their MLside: polymorphic instan-
tiation unconditionally performs a form of dynamic sealingto protect against the non-
parametric Scheme side. (In contrast, we treatnew as its own language construct, orthog-
onal to universal types.) Dynamic sealing can then be definedin terms of the primitive
coercion operators that bridge between the ML and Scheme sides. These coercions are
similar to our (meta-level) wrapping operators, but ours perform type-level sealing, not
term-level sealing.

The logical relations in Matthews & Ahmed’s formalism are somewhat reminiscent of
Eπ andE, although theirs are distinct logical relations for two languages, while ours are for
a single language and differ only in the definition ofT[[Ω]]w. In order to prove the funda-
mental property for their relations, they prove a “bridge lemma”—transferring relatedness
in one language to the other via coercions—that is analogousto our Wrapping Theorem
for-π . However, they do not propose anything like our polarized logical relations.

A key technical difference is that their formulation of the logical relations does not use
possible worlds to capture the type store (the latter is leftimplicit in their operational
semantics). Unfortunately, this resulted in a significant flaw in their paper (Ahmed, 2009).
They have since reportedly fixed the problem—independentlyof our work—using a tech-
nique similar to ours, but they have yet to write up the details.

Proof Methods. Logical relations in various forms are routinely used to reason about
program equivalence and type abstraction (Reynolds, 1983;Mitchell, 1986; Pitts, 2005;
Ahmed, 2006). In particular, Ahmed, Dreyer & Rossberg recently applied step-indexed
logical relations with possible worlds to reason about typeabstraction for a language
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with higher-order state (Ahmedet al., 2009). State in G is comparatively benign, but still
requires a circular definition of worlds that we stratify using steps.

Pitts & Stark (1993) used logical relations to reason about program equivalence in the
ν-calculus, a language with dynamic generation of term-level names in a manner similar
to G. Since these names are abstract values with only an equality operator, it is sufficient
in their case to index the logical relation by just the partial bijection between names, which
essentially is a simple form of possible world. (In subsequent work, Pitts & Stark (1998)
generalized their technique to handle mutable references.) Type names can encode term-
level names via the type∃α.1 (Rossberg, 2003). Clearly, though, this encoding is not
fully abstract (in particular,∃α.1 is also inhabited by values not containing generated type
names). Moreover, the presence of non-termination in G marks a fundamental difference
from theν-calculus that deeply affects the equational theory of the language.

Sumii & Pierce (2003) employed logical relations in provingsecrecy results for a lan-
guage with dynamic sealing, where generated names are used as keys. Their logical relation
uses a form of possible world very similar to ours, but tying relational interpretations
to term-level private keys instead of to type names. Their worlds come into play in the
interpretation of the typebits of encrypted data, whereas in our setup the worlds are
important in the interpretation of universal and existential types. In another line of work,
Sumii & Pierce (2007a; 2007b) have usedbisimulationsto establish abstraction results for
both untyped and polymorphic languages. However, none of the languages they investigate
mixes the two paradigms.

Grossman, Morrisett & Zdancewic (2000) have proposed the use ofabstraction brackets
for syntactically tracing abstraction boundaries during program execution. However, this
is a comparatively weak method that does not seem to help in proving parametricity or
representation independence results.

13 Conclusion and Future Work

In traditional static languages, type abstraction is established by parametric polymorphism.
This approach no longer works when dynamic typing features like casts,typecase, or
reflection are added to the mix. Dynamic type generation addresses this problem.

In this paper, we have shown that dynamic type generation succeeds in recovering type
abstraction. More specifically: (1) we presented a step-indexed logical relation for reason-
ing about program equivalence in a non-parametric languagewith cast and type generation;
(2) we showed that parametricity can be re-established systematically using a simple type-
directed wrapping, which then can be reasoned about using a parametric variant of the
logical relation; (3) we showed that parametricity can be refined into parametricbehavior
and parametricusageand gave a polarized logical relation that distinguishes these dual
notions, thereby handling more subtle examples. The concept of a polarized logical relation
seems novel, and it remains to be seen what else it might be useful for. Interestingly, all
our logical relations can be defined as a single family differing only in the interpretationT
of types-as-data.

An open question is whether the wrapping, when seen as an embedding of Fµ into Gµ , is
fully abstract. We conjecture that it is, but we were only able to show equivalence reflection,
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not equivalence preservation. Proving full abstraction remains an interesting challenge for
future work.

On the practical side, we would like to scale our logical relation to handle more realistic
languages, such as ML. We do not expect any problems as long aswe deal only with pure
language features. But unfortunately, wrapping cannot easily be extended to an impure type
of mutable references, at least not without making the wrapping operator primitive in the
language semantics. Nevertheless, we believe that our approach still scales to a large class
of impure languages, so long as we instrument it with a distinction between module and
core levels. Specifically, note that wrapping only does something “interesting” for universal
and existential types, and is the identity (moduloη-expansion) otherwise. Thus, for a lan-
guage like Standard ML, which does not support first-class polymorphism—or extensions
like Alice ML, which supports modules as first-class values,but not existentials—wrapping
is neverneededon the core level, and could hence be confined to the module level. In such a
language, wrapping can be kept implicit, as part of the implementation of opaque signature
ascription—and in fact, that is exactly what Alice ML does. For core-level types, such as
ref types, it can just be the identity. (Also included in “core-level” are recursive types,
for which wrapping otherwise entails expensive copying.) This is a real advantage of type
generation over dynamic sealing since, for the latter, the need to seal/unseal individual
values of abstract type precludes any attempt to confine wrapping to modules.
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d’ordre supérieur. Ph.D. thesis, Université Paris VII.
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A The LanguagesG and Gµ

The differences between G and Gµ , i.e., everything related to recursive types, are under-
lined.

A.1 Syntax and Semantics

Syntax

Types τ ::= α | b | τ × τ | τ → τ | ∀α.τ | ∃α.τ | µα.τ
Values v ::= x | . . . | 〈v,v〉 | λx:τ.e | Λα.e | pack 〈τ,v〉 as τ | roll v as τ
Expressions e ::= v | . . . | 〈e,e〉 | e.1 | e.2 | e e| eτ | pack 〈τ,v〉 as τ |

unpack 〈α,x〉=e in e | roll eas τ | unroll e |
cast τ τ | new α≈τ in e

Stores σ ::= ε | σ ,α≈τ

Evaluation Ctxt’s E ::= . . . | 〈E,e〉 | 〈v,E〉 | E.1 | E.2 | E e | v E | E τ |

pack 〈τ,E〉 as τ | unpack 〈α,x〉=E in e |

roll E as τ | unroll E

Type Environments ∆ ::= ε | ∆,α | ∆,α≈τ
Value Environments Γ ::= ε | Γ,x:τ

Reduction σ ;e →֒ σ ;e

· · ·

σ ;E[〈v1,v2〉.i] →֒ σ ;E[vi ] (RPROJ)

σ ;E[(λx:τ.e)v] →֒ σ ;E[e[v/x]] (RAPP)

σ ;E[(λ α.e)τ] →֒ σ ;E[e[τ/α]] (RINST)

σ ;E[unpack 〈α,x〉=(pack 〈τ,v〉) in e] →֒ σ ;E[e[τ/α][v/x]] (RUNPACK)

σ ;E[unroll(roll v as τ)] →֒ σ ;E[v] (RUNROLL)

(α /∈ dom(σ)) σ ;E[newα≈τ in e] →֒ σ ,α≈τ;E[e] (RNEW)

(τ1 = τ2) σ ;E[cast τ1 τ2] →֒ σ ;E[λx1:τ1.λx2:τ2.x1] (RCAST1)

(τ1 6= τ2) σ ;E[cast τ1 τ2] →֒ σ ;E[λx1:τ1.λx2:τ2.x2] (RCAST2)

Type Environments ⊢ ∆

⊢ ε
⊢ ∆ α /∈ dom(∆)

⊢ ∆,α
∆ ⊢ τ α /∈ dom(∆)

⊢ ∆,α≈τ

Value Environments ∆ ⊢ Γ

⊢ ∆
∆ ⊢ ε

∆ ⊢ Γ ∆ ⊢ τ x /∈ dom(Γ)

∆ ⊢ Γ,x:τ
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Types ∆ ⊢ τ

(TVAR)
⊢ ∆ α ∈ ∆

∆ ⊢ α
(TNAME)

⊢ ∆ α≈τ ∈ ∆
∆ ⊢ α

(TBASE)
⊢ ∆

∆ ⊢ b
(TTIMES)

∆ ⊢ τ1 ∆ ⊢ τ2

∆ ⊢ τ1× τ2
(TARR)

∆ ⊢ τ1 ∆ ⊢ τ2

∆ ⊢ τ1 → τ2

(TALL )
∆,α ⊢ τ
∆ ⊢ ∀α.τ

(TEXISTS)
∆,α ⊢ τ
∆ ⊢ ∃α.τ

(TREC)
∆,α ⊢ τ

∆ ⊢ µα.τ

Type Isomorphism ∆ ⊢ τ ≈ τ

(CVAR)
⊢ ∆ α ∈ ∆

∆ ⊢ α ≈ α
(CNAME)

⊢ ∆ α≈τ ∈ ∆
∆ ⊢ α ≈ τ

(CBASE)
⊢ ∆

∆ ⊢ b≈ b

(CTIMES)
∆ ⊢ τ1 ≈ τ ′1 ∆ ⊢ τ2 ≈ τ ′2

∆ ⊢ τ1× τ2 ≈ τ ′1× τ ′2
(CARR)

∆ ⊢ τ1 ≈ τ ′1 ∆ ⊢ τ2 ≈ τ ′2
∆ ⊢ τ1 → τ2 ≈ τ ′1 → τ ′2

(CALL )
∆,α ⊢ τ ≈ τ ′

∆ ⊢ ∀α.τ ≈ ∀α.τ ′
(CEXISTS)

∆,α ⊢ τ ≈ τ ′

∆ ⊢ ∃α.τ ≈ ∃α.τ ′

(CREC)
∆,α ⊢ τ ≈ τ ′

∆ ⊢ µα.τ ≈ µα.τ ′

(CSYM)
∆ ⊢ τ ′ ≈ τ
∆ ⊢ τ ≈ τ ′

(CTRANS)
∆ ⊢ τ ≈ τ ′′ ∆ ⊢ τ ′′ ≈ τ ′

∆ ⊢ τ ≈ τ ′

Expressions ∆;Γ ⊢ e : τ

(EVAR)
∆ ⊢ Γ x:τ ∈ Γ

∆;Γ ⊢ x : τ
· · ·

(EPAIR)
∆;Γ ⊢ e1 : τ1 ∆;Γ ⊢ e2 : τ2

∆;Γ ⊢ 〈e1,e2〉 : τ1× τ2
(EPROJ)

∆;Γ ⊢ e : τ1× τ2

∆;Γ ⊢ e.i : τi

(EABS)
∆;Γ,x:τ1 ⊢ e : τ2

∆;Γ ⊢ λx:τ1.e : τ1 → τ2
(EAPP)

∆;Γ ⊢ e1 : τ2 → τ ∆;Γ ⊢ e2 : τ2

∆;Γ ⊢ e1 e2 : τ

(EGEN)
∆,α;Γ ⊢ e : τ

∆;Γ ⊢ Λα.e : ∀α.τ
(EINST)

∆;Γ ⊢ e : ∀α.τ ∆ ⊢ τ2

∆;Γ ⊢ eτ2 : τ[τ2/α]

(EPACK)
∆;Γ ⊢ e : τ[τ1/α] ∆ ⊢ τ1

∆;Γ ⊢ pack 〈τ1,e〉 as ∃α.τ : ∃α.τ

(EUNPACK)
∆;Γ ⊢ e1 : ∃α.τ1 ∆,α;Γ,x:τ1 ⊢ e2 : τ ∆ ⊢ τ

∆;Γ ⊢ unpack 〈α,x〉=e1 in e2 : τ
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(EROLL)
∆;Γ ⊢ e : τ[µα.τ/α]

∆;Γ ⊢ roll eas µα.τ : µα.τ
(EUNROLL)

∆;Γ ⊢ e : µα.τ
∆;Γ ⊢ unroll e : τ[µα.τ/α]

(ECAST)
∆ ⊢ Γ ∆ ⊢ τ1 ∆ ⊢ τ2

∆;Γ ⊢ cast τ1 τ2 : τ1 → τ2 → τ2

(ENEW)
∆,α≈τ ′;Γ ⊢ e : τ ∆ ⊢ τ ∆ ⊢ Γ

∆;Γ ⊢ new α≈τ ′ in e : τ

(ECONV)
∆;Γ ⊢ e : τ ′ ∆ ⊢ τ ≈ τ ′

∆;Γ ⊢ e : τ

A.2 Structural Properties

Type Substitutions δ ::= /0 | δ ,α 7→τ
Value Substitutions γ ::= /0 | γ,x7→v

Configurations ⊢ σ ;e : τ

∆ = σ ∆;ε ⊢ e : τ ε ⊢ τ
⊢ σ ;e : τ

Type Substitutions ∆ ⊢ δ : ∆

⊢ ∆′

∆′ ⊢ /0 : ε
∆′ ⊢ δ : ∆ ∆′ ⊢ τ
∆′ ⊢ δ ,α 7→τ : ∆,α

∆′ ⊢ δ : ∆ α ′≈δ (τ) ∈ ∆′

∆′ ⊢ δ ,α 7→α ′ : ∆,α≈τ

Type Substitution Isomorphism ∆ ⊢ δ ≈ δ : ∆

⊢ ∆′

∆′ ⊢ /0≈ /0 : ε
∆′ ⊢ δ ≈ δ ′ : ∆ ∆′ ⊢ τ ≈ τ ′

∆′ ⊢ δ ,α 7→τ ≈ δ ′,α 7→τ ′ : ∆,α

∆′ ⊢ δ ≈ δ ′ : ∆ α1≈δ (τ) ∈ ∆′ α2≈δ ′(τ) ∈ ∆′

∆′ ⊢ δ ,α 7→α1 ≈ δ ′,α 7→α2 : ∆,α≈τ

Value Substitutions ∆;Γ ⊢ γ : Γ

∆ ⊢ Γ′

∆;Γ′ ⊢ /0 : ε
∆;Γ′ ⊢ γ : Γ ∆;Γ′ ⊢ v : τ

∆;Γ′ ⊢ γ,x7→v : Γ,x:τ

Lemma 48(Weakening)
1. If ∆ ⊢ τ and∆′ ⊇ ∆ and⊢ ∆′, then∆′ ⊢ τ.
2. If ∆ ⊢ τ ≈ τ ′ and∆′ ⊇ ∆ and⊢ ∆′, then∆′ ⊢ τ ≈ τ ′.
3. If ∆ ⊢ Γ and∆′ ⊇ ∆ and⊢ ∆′, then∆′ ⊢ Γ.
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4. If ∆;Γ ⊢ e : τ and∆′ ⊇ ∆ and⊢ ∆′, then∆′;Γ ⊢ e : τ.
5. If ∆;Γ ⊢ e : τ andΓ′ ⊇ Γ and∆ ⊢ Γ′, then∆;Γ′ ⊢ e : τ.
6. If ∆;Γ ⊢ γ : Γ and∆′ ⊇ ∆ and⊢ ∆′, then∆′;Γ ⊢ γ : Γ.

Lemma 49(Substitution)
1. If ∆ ⊢ τ and∆′ ⊢ δ : ∆, then∆′ ⊢ δ (τ).
2. If ∆ ⊢ τ ≈ τ ′ and∆′ ⊢ δ ≈ δ ′ : ∆, then∆′ ⊢ δ (τ) ≈ δ ′(τ ′).
3. If ∆ ⊢ Γ and∆′ ⊢ δ : ∆, then∆′ ⊢ δ (Γ).
4. If ∆;Γ ⊢ e : τ and∆′ ⊢ δ : ∆, then∆′;δ (Γ) ⊢ δ (e) : δ (τ).
5. If ∆;Γ ⊢ e : τ and∆;Γ′ ⊢ γ : Γ, then∆;Γ′ ⊢ γ(e) : τ.

Lemma 50(Validity)
1. If ∆ ⊢ τ, then⊢ ∆.
2. If ∆ ⊢ τ ≈ τ ′, then⊢ ∆.
3. If ∆ ⊢ Γ, then⊢ ∆.
4. If ∆;Γ ⊢ e : τ, then⊢ ∆ and∆ ⊢ Γ and∆ ⊢ τ.

Lemma 51(Variable Containment)
1. If ∆ ⊢ τ andα ∈ ftv(τ), thenα ∈ dom(∆).
2. If ∆ ⊢ τ ≈ τ ′ andα ∈ ftv(τ)∪ ftv(τ ′), thenα ∈ dom(∆).
3. If ∆ ⊢ Γ andα ∈ ftv(Γ), thenα ∈ dom(∆).
4. If ∆;Γ ⊢ e : τ andα ∈ ftv(Γ)∪ ftv(e)∪ ftv(τ), thenα ∈ dom(∆).
5. If ∆;Γ ⊢ e : τ andx∈ fvv(e), thenx∈ dom(Γ).

A.3 Type Safety

Theorem 52(Preservation)
If σ ;e →֒ σ ′;e′ and⊢ σ ;e : τ, then⊢ σ ′;e′ : τ.

Lemma 53(Canonical Values)
Assume⊢ σ ;v : τ. Then:

1. If τ = τ1× τ2, thenv = 〈v1,v2〉.
2. If τ = τ1 → τ2, thenv = λx:τ ′1.e.
3. If τ = ∀α.τ1, thenv = Λα.e.
4. If τ = ∃α.τ1, thenv = pack 〈τ2,v1〉 as τ ′.
5. If τ = µα.τ1, thenv = roll v′ as τ ′.

Theorem 54(Progress)
If ⊢ σ ;e : τ ande 6= v, thenσ ;e →֒ σ ′;e′.

A.4 Contextual Approximation and Equivalence

(contexts) C ::= [ ] | 〈C,e〉 | 〈e,C〉 | C.1 | C.2 | λx:τ.C | C e | e C |

Λα.C | C τ | pack〈τ,C〉 | unpack〈α,x〉=C in e |
unpack 〈α,x〉=e in C | roll C as τ | unroll C | new α≈τ in C
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Contexts ⊢C : (∆;Γ;τ) ; (∆;Γ;τ)

(CEMPTY)
∆ ⊆ ∆′ Γ ⊆ Γ′ ∆′ ⊢ Γ′

⊢ [ ] : (∆;Γ;τ) ; (∆′;Γ′;τ)

(CABS)
⊢C : (∆;Γ;τ) ; (∆′;Γ′,x:τ1;τ2)

⊢ λx:τ1.C : (∆;Γ;τ) ; (∆′;Γ′;τ1 → τ2)

(CPAIR.1)
⊢C : (∆;Γ;τ) ; (∆′;Γ′;τ1) ∆′;Γ′ ⊢ e : τ2

⊢ 〈C,e〉 : (∆;Γ;τ) ; (∆′;Γ′;τ1× τ2)

(CPAIR.2)
⊢C : (∆;Γ;τ) ; (∆′;Γ′;τ2) ∆′;Γ′ ⊢ e : τ1

⊢ 〈e,C〉 : (∆;Γ;τ) ; (∆′;Γ′;τ1× τ2)

(CPROJ)
⊢C : (∆;Γ;τ) ; (∆′;Γ′;τ1× τ2)

⊢C.i : (∆;Γ;τ) ; (∆′;Γ′;τi)

(CAPP.1)
⊢C : (∆;Γ;τ) ; (∆′;Γ′;τ1 → τ2) ∆′;Γ′ ⊢ e : τ1

⊢C e: (∆;Γ;τ) ; (∆′;Γ′;τ2)

(CAPP.2)
⊢C : (∆;Γ;τ) ; (∆′;Γ′;τ1) ∆′;Γ′ ⊢ e : τ1 → τ2

⊢ e C: (∆;Γ;τ) ; (∆′;Γ′;τ2)

(CGEN)
⊢C : (∆;Γ;τ) ; (∆′,α;Γ′;τ ′)

⊢ Λα.C : (∆;Γ;τ) ; (∆′;Γ′;∀α.τ ′)

(CINST)
⊢C : (∆;Γ;τ) ; (∆′;Γ′;∀α.τ1) ∆′ ⊢ τ2

⊢C τ2 : (∆;Γ;τ) ; (∆′;Γ′;τ1[τ2/α])

(CPACK)
⊢C : (∆;Γ;τ) ; (∆′;Γ′;τ1[τ2/α]) ∆′ ⊢ τ2

⊢ pack〈τ2,C〉 : (∆;Γ;τ) ; (∆′;Γ′;∃α.τ1)

(CUNPACK.1)
⊢C : (∆;Γ;τ) ; (∆′;Γ′;∃α.τ1) ∆′,α;Γ′,x:τ1 ⊢ e2 : τ2 ∆′ ⊢ τ2

⊢ unpack 〈α,x〉=C in e : (∆;Γ;τ) ; (∆′;Γ′;τ2)

(CUNPACK.2)
⊢C : (∆;Γ;τ) ; (∆′,α;Γ′,x:τ1;τ2) ∆′;Γ′ ⊢ e : ∃α.τ1 ∆′ ⊢ τ2

⊢ unpack 〈α,x〉=e in C : (∆;Γ;τ) ; (∆′;Γ′;τ2)

(CROLL)
⊢C : (∆;Γ;τ) ; (∆′;Γ′;τ ′[µα.τ ′/α])

⊢ roll C as µα.τ ′ : (∆;Γ;τ) ; (∆′;Γ′;µα.τ ′)

(CUNROLL)
⊢C : (∆;Γ;τ) ; (∆′;Γ′;µα.τ ′)

⊢ unroll C : (∆;Γ;τ) ; (∆′;Γ′;τ ′[µα.τ ′])

(CNEW)
⊢C : (∆;Γ;τ) ; (∆′,α≈τ1;Γ′;τ2) ∆′ ⊢ τ2 ∆′ ⊢ Γ′

⊢ new α≈τ ′ in C : (∆;Γ;τ) ; (∆′;Γ′;τ2)

(CCONV)
⊢C : (∆;Γ;τ) ; (∆′;Γ′;τ ′) ∆′ ⊢ τ ′ ≈ τ ′′

⊢C : (∆;Γ;τ) ; (∆′;Γ′;τ ′′)
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Termination & Divergence σ ;e↓ σ ;e↑

σ ;e↓
def
⇐⇒ ∃σ ′,v. σ ;e →֒∗ σ ′;v

σ ;e↑
def
⇐⇒ ∄σ ′,v. σ ;e →֒∗ σ ′;v

Contextual Approximation ∆;Γ ⊢ e≤ e : τ

∆;Γ ⊢ e1 ≤ e2 : τ def
⇐⇒ ∆;Γ ⊢ e1 : τ ∧∆;Γ ⊢ e2 : τ ∧∀σ ,C,τ ′.

⊢ σ ∧⊢C : (∆;Γ;τ) ; (σ ;ε;τ ′)∧σ ;C[e1]↓⇒ σ ;C[e2]↓

Contextual Equivalence ∆;Γ ⊢ e≡ e : τ

∆;Γ ⊢ e1 ≡ e2 : τ def
⇐⇒ ∆;Γ ⊢ e1 ≤ e2 : τ ∧∆;Γ ⊢ e2 ≤ e1 : τ

A.5 Encoding Recursive Functions

A.5.1 Usingcast

fix′ f (x).e : τ1 → τ2 with vd := λxa:τ1.v (∀α.α → τ1 → τ2) v xa

wherev = Λα.λxs:α.(λ f :(τ1 → τ2).λx:τ1.e) v′

andv′ = λxa:τ1.(cast α (∀α.α → τ1 → τ2) xs vd) xa

Due to cast’s required default argument,fix′ also needs to take a default value. Con-
sequently, a fixed-point operator only exists for inhabitedtypes. It is easy to verify the
following two properties:

• σ ;(fix′ f (x).e : τ1 → τ2 with vd) v →֒∗ σ ;e[fix′ f (x).e : τ1 → τ2 with vd/ f ][v/x], for
anyσ .

• If ∆;Γ, f :τ1 → τ2,x:τ1 ⊢ e: τ2 and∆;Γ⊢ vd : ∀α.α → τ1 → τ2, then∆;Γ⊢ (fix′ f (x).e:
τ1 → τ2 with vd) : τ1 → τ2.

A.5.2 Using Recursive Types

fix f (x).e : τ1 → τ2 := λxa:τ1.v (roll v as µα.α → τ1 → τ2) xa

wherev = λxs:(µα.α → τ1 → τ2).(λ f :(τ1 → τ2).λx:τ1.e)
(λxa:τ1.(unroll xs) xs xa)

It is easy to verify the following two properties:

• σ ;(fix f (x).e : τ1 → τ2) v →֒∗ σ ;e[fix f (x).e : τ1 → τ2/ f ][v/x], for anyσ .
• If ∆;Γ, f :τ1 → τ2,x:τ1 ⊢ e : τ2, then∆;Γ ⊢ (fix f (x).e : τ1 → τ2) : τ1 → τ2.



ZU064-05-FPR main 29 April 2011 15:27

60 Georg Neis, Derek Dreyer and Andreas Rossberg

B Some Proofs

B.1 Lemma 13 from Section 4

If (δ1,δ2,ρ) ∈ Dn[[∆]]w0 andδ = au(δ1,δ2,w0.η) and∆ ⊢ τ, then:

1. Vn[[τ]]ρ = Vn[[δ (τ)]]w0.ρ
2. En[[τ]]ρ = En[[δ (τ)]]w0.ρ

Proof
By primary induction onn and secondary induction on the derivation of∆ ⊢ τ. We show
the interesting cases.

1. • Caseτ = α wereα ∈ ∆:

— Then we know from the definition ofDn[[∆]]w0 that there is(τ1,τ2, r) ∈

Tn[[Ω]]w0 such thatδi = δi1,α 7→τi ,δi2 andρ = ρ1,α 7→r,ρ2.

— By definition of Tn[[Ω]]w0 there isτ ′ such thatτi = w0.η i(τ ′) and r.R =

Vn[[τ ′]]w0.ρ .

— HenceVn[[α]]ρ = Vn[[τ ′]]w0.ρ .

— Sinceτi = w0.η i(δ (α)) by Lemma 12, the injectivity ofw0.η i impliesτ ′ =
δ (α).

• Caseτ = α whereα≈τ ′ ∈ ∆:

— Then we know from the definition ofDn[[∆]]w0 thatδi = δi1,α 7→αi ,δi2 and
ρ = ρ1,α 7→(ρ1

1(τ ′),ρ2
1(τ ′),Vn[[τ ′]]ρ1),ρ2 with αi = w0.η i(α ′) andVn[[τ ′]]ρ1 =

w0.ρ(α ′).R for someα ′.

— Because of the injectivity ofw0.η i , w0.η i(α ′) = αi = δi(α) = w0.η iδ (α)

impliesα ′ = δ (α).

— HenceVn[[α]]ρ = Vn[[τ ′]]ρ1 = Vn[[α ′]]w0.ρ = Vn[[δ (α)]]w0.ρ .

• Caseτ = ∀α.τ ′ with ∆,α ⊢ τ ′:
— We showVn[[τ]]ρ ⊆Vn[[δ (τ)]]w0.ρ ; the other direction is symmetric.

— Suppose(k,w,Λα.e1,Λα.e2) ∈Vn[[∀α.τ ′]]ρ .

— Suppose further(k′′,w′′) = (k′,w′) ⊒ (k,w) and(τ1,τ2, r) ∈ Tk′ [[Ω]]w′.

— We know(k′′,w′′,e1[τ1/α],e2[τ2/α]) ∈ En[[τ ′]]ρ ,α 7→r.

— To show:(k′′,w′′,e1[τ1/α],e2[τ2/α]) ∈ En[[δ (τ ′)]]w0.ρ ,α 7→r

— This reduces to showingEk′ [[τ ′]]⌊ρ⌋k′ ,α 7→r = Ek′ [[δ (τ ′)]]w′.ρ ,α 7→r.

— By assumption and Lemma 4,(δ1,δ2,⌊ρ⌋k′) ∈ Dk′ [[∆]]w′.

— Let (δ ′
1,δ ′

2,ρ ′) := ((δ1,α 7→τ1),(δ2,α 7→τ2),(⌊ρ⌋k′ ,α 7→r)), so(δ ′
1,δ ′

2,ρ ′) ∈

Dk′ [[∆,α]]w′.

— By Lemma 12,δ = au(δ1,δ2,w′.η).

— Since(τ1,τ2, r) ∈ Tk′ [[Ω]]w′ we knowτi = w′.η i(τ ′′) and
r = (w′.ρ1(τ ′′),w′.ρ2(τ ′′),Vk′ [[τ ′′]]w′.ρ).

— It is easy to see then thatδ ,α 7→τ ′′ = au(δ ′
1,δ ′

2,w
′.η).

— Hence by induction,Ek′ [[τ ′]]ρ ′ = Ek′ [[δ (τ ′)[τ ′′/α]]]w′.ρ .
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— And by LR-Substitution,

Ek′ [[δ (τ ′)[τ ′′/α]]]w′.ρ
= Ek′ [[δ (τ ′)]]w′.ρ ,α 7→(w′.ρ1(τ ′′),w′.ρ2(τ ′′),Vk′ [[τ ′′]]w′.ρ)

= Ek′ [[δ (τ ′)]]w′.ρ ,α 7→r.

2. Follows immediately from part (1).

B.2 Partly Benign Effects (Repeatability)

Consider the following functions (whereτ is arbitrary but closed):

v1 := λx:(unit → τ). let x′ = x() in x()

v2 := λx:(unit → τ). x()

We first proveε;ε ⊢ v1- v2 : (unit → τ) → τ. The key here is that we relate thesecond
call of x in v1—the one whose return value matters—to the single call ofx in v2. To do so,
we have to construct a worldw′

1 that differs from the “initial” worldw′ in that its first type
store is the one in which the second call ofx is executed.

Proof
• Supposew0 ∈ Worldn and(k,w) = (n,w0).
• To show:(k,w,v1,v2) ∈Vn[[(unit → τ) → τ]]

• So suppose(k′,w′,λx.e1,λx.e2) ∈Vn[[unit → τ]] where(k′,w′) ⊒ (k,w).
• To show:(k′,w′, let x′ = (λx.e1) () in (λx.e1) (),(λx.e2) ()) ∈ En[[τ]]

• Suppose thatw′.σ1; let x′ = (λx.e1) () in (λx.e1) () terminates:

w′.σ1; let x′ = (λx.e1) () in (λx.e1) ()

→֒1 w′.σ1; let x′ = e1[()/x] in (λx.e1) ()

→֒ j1 σ ′
1; let x′ = v′1 in (λx.e1) ()

→֒1 σ ′
1;(λx.e1) ()

→֒1 σ ′
1;e1[()/x]

→֒ j2 σ1;v′′1

and that 3+ j1+ j2 =: j < k′.
• Let w′

1 := (σ ′
1,w

′.σ2,w′.η ,w′.ρ), so(k′,w′
1) ⊒ (k′,w′).

• Instantiating(k′,w′,λx.e1,λx.e2) ∈ Vn[[unit → τ]] with (k′ − j1 − 3,⌊w′
1⌋,(),()) ∈

Vn[[unit]] gives us(k′− j1−3,⌊w′
1⌋,e1[()/x],e2[()/x]) ∈ En[[τ]].

• Instantiating this withσ ′
1;e1[()/x] →֒ j2 σ1;v′′1 yields(k′− j,w′′)⊒ (k′− j1−3,⌊w′

1⌋)

such that

w′.σ2;e2[()/x] →֒∗ w′′.σ2;v′2

with w′′.σ1 = σ1 and(k′− j,w′′,v′′1,v
′
2) ∈Vn[[τ]].

• This implies(k′− j,w′′) ⊒ (k′,w′) and

w′.σ2;(λx.e2) () →֒∗ w′′.σ2;v′2.
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It remains to show the other direction,i.e.,ε;ε ⊢ v2- v1 : (unit→ τ)→ τ. We first relate
the single call ofx in v2 (resulting in a valuev′1) to the first call ofx in v1. From that we
learn that the latter terminates. We can then construct a world w′

2 from w′ as in the previous
part and use that to relate the call ofx in v2 also to thesecondcall of x in v1. From that we
learn that also this call terminates and that it results in a valuev′′2 to whichv′1 is related.

Proof
• Supposew0 ∈ Worldn and(k,w) = (n,w0).
• To show:(k,w,v2,v1) ∈Vn[[(unit → τ) → τ]]

• So suppose(k′,w′,λx.e1,λx.e2) ∈Vn[[unit→ τ]] where(k′,w′) ⊒ (k,w).
• To show:(k′,w′,(λx.e1) (), let x′ = (λx.e2) () in (λx.e2) ()) ∈ En[[τ]]

• Supposew′.σ1;(λx.e1) () terminates:

w′.σ1;(λx.e1) ()

→֒1 w′.σ1;e1[()/x]
→֒ j ′ σ1;v′1

and that 1+ j ′ =: j < k′.
• Instantiating(k′,w′,λx.e1,λx.e2)∈Vn[[unit→ τ]] with (k′−1,⌊w′⌋,(),())∈Vn[[unit]]

yields(k′−1,⌊w′⌋,e1[()/x],e2[()/x]) ∈ En[[τ]].
• Consequently there exists(k′− j,w′′) ⊒ (k′−1,⌊w′⌋) such that

w′.σ2;e2[()/x] →֒∗ w′′.σ2;v′2.

• Let w′
2 = (w′.σ1,w′′.σ2,w′.η ,w′.ρ), so(k′,w′

2) ⊒ (k′,w′).
• Instantiating(k′,w′,λx.e1,λx.e2)∈Vn[[unit→ τ]] with (k′−1,⌊w′

2⌋,(),())∈Vn[[unit]]

yields(k′−1,⌊w′
2⌋,e1[()/x],e2[()/x]) ∈ En[[τ]].

• Consequently there exists(k′− j,w′′′) ⊒ (k′−1,⌊w′
2⌋) such that

w′′.σ2;e2[()/x] →֒∗ w′′′.σ2;v′′2

with w′′′.σ1 = σ1 and(k′− j,w′′′,v′1,v
′′
2) ∈Vn[[τ]].

• Note that
w′.σ2; let x′ = (λx.e2) () in (λx.e2) ()

→֒1 w′.σ2; let x′ = e2[()/x] in (λx.e2) ()

→֒∗ w′′.σ2; let x′ = v′2 in (λx.e2) ()

→֒1 w′′.σ2;(λx.e2) ()

→֒1 w′′.σ2;e2[()/x]
→֒∗ w′′′.σ2;v′′2

B.3 Partly Benign Effects (Order Independence)

Consider the following functions (whereτ andτ ′ are arbitrary but closed):

v′1 := λx:(unit → τ).λy:(unit → τ ′). lety′ = y() in 〈x(),y′〉
v′2 := λx:(unit → τ).λy:(unit → τ ′).〈x(),y()〉

We showε;ε ⊢ v′1- v′2 : (unit → τ) → (unit → τ ′) → (τ × τ ′). (The proof for the other
direction is nearly identical.) We start by constructing a world w′

2 from the “initial” world
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w′′ that lets us relate the second application inv′1 (namelyx()) to the corresponding first
application inv′2, which yields a future worldw′′

2 and valuesv′′1, v′′2 that are related in it. We
then construct another worldw′

1 that lets us relate the first application inv′1 (namelyy()) to
the corresponding second application inv′2, which yields a future worldw′′

1 and valuesv′3,
v′4 that are related in it. Finally, we need to merge worldsw′′

1 andw′′
2 to obtain a single future

world w3 in which the resulting pairs〈v′′1,v
′
3〉, 〈v

′′
2,v′4〉 are related. The well-formedness of

that world is not obvious and needs to be verified by case analysis.

Proof
• Supposew0 ∈ Worldn and(k,w) = (n,w0).
• To show:(k,w,v′1,v

′
2) ∈Vn[[(unit → τ) → (unit → τ ′) → (τ × τ ′)]]

• So suppose(k′,w′,λz.e1,λz.e2) ∈Vn[[unit→ τ]] where(k′,w′) ⊒ (k,w).
• To show:(k′,w′,λy. lety′ = y() in 〈(λz.e1)(),y′〉,

λy. 〈(λz.e2)(),y()〉) ∈Vn[[(unit → τ ′) → (τ × τ ′)]]
• So suppose(k′′,w′′,λz′.e3,λz′.e4) ∈Vn[[unit → τ ′]] where(k′′,w′′) ⊒ (k′,w′).
• To show:(k′′,w′′, lety′ = (λz′.e3)() in 〈(λz.e1)(),y′〉,

〈(λz.e2)(),(λz′.e4)()〉) ∈ En[[τ × τ ′]]
• Supposew′′.σ1; lety′ = (λz′.e3)() in 〈(λz.e1)(),y′〉 terminates

w′′.σ1; lety′ = (λz′.e3)() in 〈(λz.e1)(),y′〉
→֒1 w′′.σ1; lety′ = e3[()/z′] in 〈(λz.e1)(),y′〉
→֒ j1 σ ′

1; lety′ = v′3 in 〈(λz.e1)(),y′〉
→֒1 σ ′

1;〈(λz.e1)(),v′3〉
→֒1 σ ′

1;〈e1[()/z],v′3〉
→֒ j2 σ1;〈v′′1,v

′
3〉

and j1 + j2 +3 =: j < k′′.
• Let (k′2,w

′
2) := (k′′− j1−3,(σ ′

1,w
′′.σ2,w′′.η ,⌊w′′.ρ⌋)), so(k′2,w

′
2) ⊒ (k′′,w′′).

• Instantiating(k′,w′,λz.e1,λz.e2)∈Vn[[unit→ τ]] with (k′2,w
′
2,(),())∈Vn[[unit]] gives

us(k′2,w
′
2,e1[()/z],e2[()/z]) ∈ En[[τ]].

• Note thatw′
2.σ1 = σ ′

1.
• Consequently, there exists(k′′− j,w′′

2) ⊒ (k′2,w
′
2) such that

w′′.σ2;e2[()/z] →֒∗ w′′
2.σ2;v′′2

with w′′
2.σ1 = σ1 and(k′′− j,w′′

2,v
′′
1,v

′′
2) ∈Vn[[τ]].

• Let (k′1,w
′
1) := (k′′−1,(w′′.σ1,w′′

2.σ2,w′′.η ,⌊w′′.ρ⌋)), so(k′1,w
′
1) ⊒ (k′′,w′′).

• Instantiating(k′′,w′′,λz′.e3,λz′.e4) ∈ Vn[[unit → τ ′]] with (k′1,w
′
1,(),()) ∈ Vn[[unit]]

gives us(k′1,w
′
1,e3[()/z′],e4[()/z′]) ∈ En[[τ ′]].

• Note thatw′
1.σ1 = w′′.σ1.

• Consequently, there exists(k′′−1− j1,w′′
1) ⊒ (k′1,w

′
1) such that

w′′
2.σ2;e4[()/z′] →֒∗ w′′

1.σ2;v′4

with w′′
1.σ1 = σ ′

1 and(k′′−1− j1,w′′
1,v

′
3,v

′
4) ∈Vn[[τ ′]].

• W.l.o.g. (dom(w′′
1.η) \ dom(w′′.η)) ∩ (dom(w′′

2.η) \ dom(w′′.η)) = /0, so w′′
1.η ∪

w′′
2.η andw′′

1.ρ ∪w′′
2.ρ are well-defined.

• Let w3 := (w′′
2.σ1,w′′

1.σ2,w′′
1.η ∪w′′

2.η ,⌊w′′
1.ρ⌋k′′− j ∪w′′

2.ρ).
• To see thatw3 is well-formed, it remains to show the injectivity ofw3.η i :
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— Note that rng(w′′
1.η i) \ rng(w′′.η i) ⊆ dom(w′′

1.σi) \dom(w′
1.σi) by definition of

world extension.
— Similarly, rng(w′′

2.η
i)\ rng(w′′.η i) ⊆ dom(w′′

2.σi)\dom(w′
2.σi) by definition of

world extension.
— Supposeα,α ′ ∈ dom(w3.η).
— Caseα,α ′ ∈ dom(w′′.η): Trivial.
— Caseα ∈ dom(w′′.η) andα ′ ∈ dom(w′′

1.η)\dom(w′′.η):

– Thenw3.η i(α) ∈ dom(w′′.σi) andw3.η i(α ′) ∈ dom(w′′
1.σi)\dom(w′

1.σi).

– Sincew′
1.σi = w′′.σi , we havew3.η i(α) 6= w3.η i(α ′).

— Caseα ∈ dom(w′′.η) andα ′ ∈ dom(w′′
2.η)\dom(w′′.η):

– Thenw3.η i(α) ∈ dom(w′′.σi) andw3.η i(α ′) ∈ dom(w′′
2.σi)\dom(w′

2.σi).

– Sincew′
1.σi = w′′.σi , we havew3.η i(α) 6= w3.η i(α ′).

— Caseα ∈ dom(w′′
1.η)\dom(w′′.η) andα ′ ∈ dom(w′′

2.η)\dom(w′′.η):

– Thenw3.η i(α) ∈ dom(w′′
1.σi) \dom(w′

1.σi) andw3.η i(α ′) ∈ dom(w′′
2.σi) \

dom(w′
2.σi).

– For i = 1 this meansw3.η1(α) ∈ dom(w′′
1.σ1) = dom(σ ′

1) = dom(w′
2.σ1), so

it cannot equalw3.η1(α ′).

– For i = 2 this meansw3.η2(α) ∈ dom(w′′
1.σ2) \ dom(w′′

2.σ2), so it cannot
equalw3.η2(α ′).

• Also note that(k′′− j,w3) ⊒ (k′′− j,w′′
2) and(k′′− j,w3) ⊒ (k′′−1− j1,w′′

1).
• Hence(k′′ − j,w3,v′′1,v

′′
2) ∈ Vn[[τ]] and (k′′ − j,w3,v′3,v

′
4) ∈ Vn[[τ ′]] and therefore

(k′′− j,w3,〈v′′1,v′3〉,〈v
′′
2,v

′
4〉) ∈Vn[[τ × τ ′]].

• And of course

w′′.σ2;〈(λz.e2)(),(λz′.e4)()〉 →֒
∗ w3.σ2;〈v′′2,v′4〉.


