ZU064-05-FPR main 29 April 2011 15:27

Under consideration for publication in J. Functional Pragnming 1

Non-Parametric Parametricity

GEORG NEIS, DEREK DREYER and ANDREAS ROSSBERG
Max Planck Institute for Software Systems (MPI-SWS)

(e-mail: {neis,dreyer,rossberg}@mpi-sws.org)

Abstract

Type abstraction and intensional type analysis are feaggemingly at odds—type abstraction is in-
tended to guarantee parametricity and representatiopémdience, while type analysis is inherently
non-parametric. Recently, however, several researclzsaes proposed and implemented “dynamic
type generation” as a way to reconcile these features. Teigthat, when one defines an abstract
type, one should also be able to generate at run time a frgghrtigme, which may be used as a
dynamic representative of the abstract type for purposégpef analysis. The question remains: in
a language with non-parametric polymorphism, does dynaypie generation provide us with the
same kinds of abstraction guarantees that we get from péiampelymorphism?

Our goal is to provide a rigorous answer to this question. ¥find a step-indexed Kripke logical
relation for a language with both non-parametric polymaph(in the form of type-safe cast) and
dynamic type generation. Our logical relation enables establish parametricity and representation
independence results, even in a non-parametric settingitaghing arbitrary relational interpreta-
tions to dynamically-generated type names. In additionew@ore how programs that are provably
equivalent in a more traditional parametric logical relatmay be “wrapped” systematically to pro-
duce terms that are related by our non-parametric reladiohvice versa. This leads us to develop a
“polarized” variant of our logical relation, which enablesto distinguish formally between positive
and negative notions of parametricity.

1 Introduction

When we say that a language supppasametric polymorphisgrwe mean that “abstract”
types in that language are really abstract—that is, no tci€an abstract type can guess
or depend on its underlying implementation (Reynolds, }988&ditionally, the para-
metric nature of polymorphism is guaranteed statically oy fanguage’s type system,
thus enabling the so-callggtpe-erasuranterpretation of polymorphism by which type
abstractions and instantiations are erased during cofigpila

However, some modern programming languages include alueafure that appears
to be in direct conflict with parametric polymorphism, nayngle ability to performin-
tensional type analysidHarper & Morrisett, 1995). Probably the simplest and mashe
mon instance of intensional type analysis is found in thelémgntation of languages
supporting a typ@®ynamic (Abadi et al,, 1995). In such languages, any valuenay be
castto type Dynamic, but the casfrom type Dynamic to any typet requires a runtime
check to ensure thats actual type equals. Other languages such as Acute (Sewell
et al, 2007) and Alice ML (Rossbergt al, 2004), which are designed to support dynamic
loading of modules, require the ability to check dynamicalhether a module implements

ZU064-05-FPR

main 29 April 2011 15:27

2 Georg Neis, Derek Dreyer and Andreas Rossberg

an expected interface, which in turn involves runtime icsioen of the module’s type
components. There have also been a number of more expeaipenmposals for languages
that employ aypecase construct to facilitat@olytypicprogramming€.g.,(Weirich, 2004;
Vytiniotis et al,, 2005)).

There is a fundamental tension between type analysis amdalygtraction. If one can
inspect the identity of an unknown type at run time, then thpetis not really abstract,
SO any invariants concerning values of that type may be lbr¢Wéeirich, 2004). Conse-
guently, languages with a tyfiynamic sometimes distinguish betweeastableandnon-
castabletypes—uwith types that mention user-defined abstract typksging to the latter
category—and prohibit values with non-castable types foeing cast to typ®ynamic.

This is, however, an unnecessarily severe restrictionchviifectively penalizes pro-
grammers for using type abstraction. Given a user-definstiati typet—implemented
internally, say, ajt—it is perfectly reasonable to cast a value of type t to Dynamic, so
long as we can ensure that it will subsequently be cast bdghon— t (not to, sayjnt —
int orint — t), i.e.,so long as the cast abstraction-safeMoreover, such casts are useful
when marshalling (or “pickling”) a modular component whasierface refers to abstract
types defined in other components (Rosslatia., 2004). That said, in order to ensure that
casts are abstraction-safe, it is necessary to have somefwatinguishing (dynamically,
when a cast occurs) between an abstract type and its untgnigplementation.

Thus, several researchers have proposed that languadesypé analysis facilities
should also suppodynamic type generatiofSewell, 2001; Rossberg, 2003; Vytiniotis
et al, 2005; Rossberg, 2008). The idea is simple: when one definabstract type, one
should also be able to generate at run time a “fresh” type narhieh may be used as
a unique dynamic representative of the abstract type fqugmes of type analysis(We
will see a concrete example of this in Section 2.) Intuity¢he freshness of type name
generation ensures that user-defined abstract types aved/igynamically in the same
way that they are viewed staticallyize., as distinct from all other types.

The question remains: how do we know that dynamic type géinaraorks? In a lan-
guage with intensional type analysis-e-, non-parametrigpolymorphism—can the sys-
tematic use of dynamic type generation provably ensureadigin safety and provide
us with the same kinds of abstraction guarantees that werget tfaditional parametric
polymorphism?

Our goal is to provide a rigorous answer to this question. ivdysan extension of Sys-
tem F, supporting (1) a type-safast mechanism, which is essentially a variant of Girard’s
J operator (Girard, 1972), and (2) a facility for dynamic gextion of fresh type names.
For brevity, we will call this language G. As a practical laage mechanism, theast
operator is somewhat crude in comparison to the more expeagpgecase-style constructs
proposed in the literature, but it is nonetheless usefulifkgtance, the implementation of
dynamic modules in Alice ML (Rossbeegal., 2004) relies merely onast-like operator,
not atypecase. Moreover, thecast operator renders polymorphismen-parametricand it
is one of the simplest, most canonical operators that doemaking it an ideal object

1 In languages with simple module mechanisms, such as Haitkislpossible to generate unique
type names statically. However, this is not sufficient inphesence of functors, local modules, or
first-class modules.

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 3

for formal study. Our main technical result is that, in oundaage G, the parametricity
of polymorphism that is lost due to the presenceaft may be provably regained via
judicious use of dynamic type generation. More precisetysivow that all terms that are
related by gparametriclogical relation for G can be rendered observationally egjent
by applying a type-directedirapping function that we can construct systematically.

The rest of the paper is structured as follows. In Section € pvesent our language
under consideration, G, and also give an example to illteshraw dynamic type generation
is useful.

In Section 3, we explain informally the approach that we hdaeeloped for reasoning
about G. Our approach employstep-indexed Kripke logical relatiq@hmedet al., 2009;
Appel & McAllester, 2001), with an unusual form pbssible worldhat is a close relative
of Sumii & Pierce’s (2003). This section is intended to bedully accessible to readers
who are generally familiar with the basic idea of relatiopatametricity but not with the
details of (advanced) logical relations techniques.

In Section 4, we formalize our logical relation for G and shbew it may be used
to reason about parametricity and representation indegpexed A particularly appealing
feature of our formalization is that timn-parametricity of G is encapsulated in the notion
of what it means for twdypesto be logically related to each other when viewedlata
(rather than aslassifier3. The definition of this type-level logical relation is a clieer,
which can easily be replaced with an alternative “parameggrsion.

In Sections 5-7, we explore how terms related by the par&nedrsion of our logical
relation may be “wrapped” systematically to produce tereiated by the non-parametric
version (and vice versa), thus clarifying how dynamic typeeration facilitates parametric
reasoning. This leads us, in Section 8, to develop a “pa@dfixariant of our logical
relation, which enables us to distinguish formally betwpesitive and negative notions of
parametricity. Essentially, positively parametric terexpect to bdreatedparametrically
(by their contexts), whereas negatively parametric terotsadly behaveparametrically
themselves.

In Section 9, we extend G with iso-recursive types to forthdad adapt the previous
development accordingly. Then, in Section 10, we discussthe abovementioned “wrap-
ping” function can be seen as an embedding of System F (+sigeuypes) into &, which
we conjecture to be fully abstract.

In Section 11, we observe that our logical-relations maglieldompletew.r.t. contextual
equivalence in G, but also that there are good reasons fotuist importantly, our model
is intended to generalize to the setting of a language tyjtbcase. Thus, while there exist
programs that are equivalent in the presence afsa operator but not in the presence of
the more powerfutypecase, our model does not support proofs of such equivalences. (In
essence, we conjecture that our model is in fact a “bettefidiittypecase than forcast; we
have chosen to studyst, as explained above, because it is simpler yet still inte1g9

Finally, in Section 12, we discuss related work, includiegent work on the rele-
vant concepts of dynamic sealing (Sumii & Pierce, 2007a)ranti-language interoper-
ation (Matthews & Ahmed, 2008), and in Section 13, we coneladd suggest directions
for future work.

ZU064-05-FPR

main 29 April 2011 15:27

4 Georg Neis, Derek Dreyer and Andreas Rossberg
Types Ti=al|b|ltxTt|T—>1|Va.T|3a.1
Values vi=X|...|(vwV)|AxT.e|Aa.e|pack (T,v)asT
Terms ex=Vv|...|(ee)|el|e2|ee|eT|pack(T,€)asT|

unpack (a,X)=eine| cast TT | newa=Tine

Stores o= ¢€|0o,0~T
Config’s { = o;e
Evaluation Ctxt's E = ... | (E,e) | (zE) |E.1|E.2|Ee|VE|ET|

pack (T,E) as T | unpack (a,X)=E ine

Type Environments A ::
Value Environments I ::

elA oA axT
elr,xr

AT AT
AlTFcast 1T T1 — T — Tp

AFT Ao=TTHe: T AT

(EcasT)

(Enew) AT FnewaxTine: 1/
AT He: T AFT~T
(Econv) ATkFertT
AT
a=t el
TNAME) ————
() A a
axT el
CNAME) ————
()A FaxTt
F{:1
(CONF)FU geke:T eFT
Foe:.t
g;E[(v1,w0).i] — 0;E[v] (RPROY
o;E[(AxT.€)V] — O;E[elv/X] (RAPP)
o;E[(Aa.e) 1] — o;E[e[t/a]] (RINST)
o;EJunpack (a,x)=(pack (1,v)) ing] — o;E[e[t/a][v/X] (RUNPACK)
(o0 ¢ dom(o)) O;E[newa=ting — 0o,a~T;E[¢g (RNEW)
(1=12) O;E[cast 1 To] — O;EAXiT1.AX2:T2.Xq] (RcasTl)
(11 # 12) O;Elcast 11 T7] — O E[AX1iT1.AX2:T2.X7] (RcasT2)

Fig. 1. Syntax and Semantics of G (excerpt)

2 The LanguageG

Figure 1 defines our non-parametric language G. For the naost@ is a standard call-by-
value A-calculus, consisting of the usual types and terms frome®ydt (Girard, 1972),
including pairs and existential types. (We could insteagl asChurch encoding of exis-

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 5

tentials via universals, but building existentials in asnitive gives us more leeway later,
cf. Section 5.) We also assume an unspecified set of base lymdsng with suitable
constants of—and primitive operations over—those typadi¢ated by. .. in the syntax).

Two additional, non-standard constructs isolate the ¢isdeaspects of the class of
languages we are interested in:

e castT; To V1 Vo convertsyy from typet; to 1. It checks that those two types are the
same at the time of evaluation. If so, the operatarceedand returns;. Otherwise,
it fails and defaults tap, which acts as aslse clause of the target type.

e new a=Tinegenerates a fresh abstract type nam¥alues of typex can be formed
using itsrepresentation type. Both types are deemesbmorphic but not equiva-
lent. That is, they are considered equatksssifiers but not agdata In particular,
casta TV Vo Will not succeed in casting; from o to T—it will instead return the
default valuevs.

Ourcast operator is essentially the same as Harper & Mitch&lliseCondperator (Harper
& Mitchell, 1999), which was itself a variant of the non-paretric J operator that Girard
studied in his thesis (Girard, 1972). Ongw construct is similar to previously proposed
constructs for dynamic type generation (Rossberg, 2008nigis et al., 2005; Rossberg,
2008). However, we do not requiegplicitterm-level type coercions to witness the isomor-
phism between an abstract type namnand its representation Instead, our type system
is simple enough that we can perform this conversoplicitly without losing significant
type informatior?

For convenience, we will occasionally use expressions@fdmlet x=e; ine,, which
abbreviate the terfA x:11.€2) €1 (with 171 being an appropriate type fef). We omit the
type annotation for functions and existential packages®blear from context. Moreover,
we take the liberty to generalize binary tuplestary ones where necessary and to use
pattern matching notation to decompose tuples in the obvizanner.

2.1 Typing Rules

The typing rules for the System F fragment of G are completelgdard and thus omitted
from Figure 1. We focus on the non-standard rules relatechdpand new. Full formal
details of the type system are given in Section A.

Typing of casts is straightforward (RulecEsST): cast 11 T is simply treated as a func-
tion of typer; — T2 — Tp. Its first argument is the value to be converted, and its sicon
argument is the default value returned in the case of failline rule merely requires that
the two types be well-formed.

For an expressionew a~Tine, which bindsa in e, Rule ENEW checks that the body
e is well-typed under the assumption thats implemented by the representation type
For that purpose, we enrich type environmehtsith entries of the forno=r1 that keep
track of the representation types tied to abstract type sathidte thatr may not mention
a.) We call such environment entrigge isomorphism assumptions

2 It is not obvious whether this would still be possible if thmguage were enriched with features
such as singleton kinds (Rossberg, 2008) or type-level atatipns (Weirichet al., 2011).

ZU064-05-FPR main 29 April 2011 15:27

6 Georg Neis, Derek Dreyer and Andreas Rossberg

Syntactically, type “names” are just type variables in ta&uglus (and like other type
variables, they arer-convertible). As a matter of terminology, however, we refe type
names only to those type variableghat are bound with the syntaxt” (that is, either
by new, in a storeg, or with a respective entry in a type environmait

When viewed as data.€., when inspected by theast operator), types are considered
equivalentiff they are syntactically equal (modaleconversion). In contrast, when viewed
as classifiers for terms, knowledge about the representafitype names may be taken
into account. Rule EoNv says that if a terme has a typer’, it may be assigned any
other type that issomorphicto 7’. Type isomorphism, in turn, is defined by the judgment
AF 11 = T2. We only show the rule €aME, which discharges an isomorphism assumption
a~T from the environment; the other rules implement the congeraeclosure of this
axiom. The important point here is that equivalent typesismeorphic, but isomorphic
types are not necessarily equivalent.

Finally, Rule ENEW also requires that the tyge of the bodye does not contaiu (i.e.,

7 must be well formed i alone). A type of this form can always be derived by applying
EcoNv to convertt’ to T'[T/a].

Note that the typing rules ensure that type environmentsraered and acyclic. Conse-
quently, any typé\ - T can be normalized to a tymgéthat does not contain any type names
andisisomorphicta,i.e.,A’' 1 andAF T~ 7/, whered is A without all the isomorphism
assumptions. This normalization is done using the sulbistitd* that is obtained frond
in the following way:

& =0
pa)r = A
(A, a=T1)* A oa—A*(T)
Given this normalization, it easy to see that type checlsrdgicidable.

2.2 Dynamic Semantics

The operational semantics has to deal with the generatifyesii type names. To that end,
we introduce dype storeo to record generated type names. Hence, reduction is defined
on configurationg ;) instead of plain terms. Figure 1 shows the main reductiogstul
The reduction rules for the F fragment are as usual and doatwalyy touch the store.
However, types occurring in F constructs can contain typeasbound in the store.
Reducing the expressiarew a~Tine creates a new entry far in the type store. We
rely on the usual hygiene convention for bound variablesnguee thatx is fresh with
respect to the current store (which can always be achievedignaming)® Note that this
rule is the single source of nondeterminism in our operafisamantics.
The two remaining rules are for casts. A cast takes two typelschecks whether or
not they are equivalent.€., syntactically equal). In either case, the expression resitm
a function that will return the appropriate one of the addhéil value argumentsg., the

3 A well-known alternative approach would omit the type stisréavor of using scope extrusion
rules fornew binders, as in Rossberg (2003).

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 7

value to be converted in case of success, and the defaudt @tiierwise. In the former case,
type preservation is ensured because source and targstaygknown to be equivalent.

Type preservation can be expressed using the typingooier for configurations. We
formulate this rule by treating the type store as a type enwirent, which is possible
because type stores are a syntactic subclass of type emards. (In a similar manner, we
can writet- o for well-formedness of store, by viewing it as a type environment.) It is
worth noting that the representation types in the store avemactually inspected by the
dynamic semantics. In particular, they are only neededgecifying well-formedness of
configurations and proving type soundness.

2.3 Motivating Example

Consider the following attempt to write a simple functiofiahary semaphore” ADT (Pitts,
2005) in G. Following Mitchell & Plotkin (1988), we use an stantial type, as we would
in System F:

Tsem ;= Ja.a X (a — o) X (o — bool)
esem = pack (int, (1, Ax:int.(1—X),AX:int.(Xx # 0))) as Tsem

A semaphore is essentially a flag that can be in two statémrditckedor unlocked The
state can be toggled using the first function of the ADT, anchit be polled using the
second. Our little module uses an integer value for reptesgthe state, taking 1 for
locked and O for unlocked. It is an invariant of the implenagioin that the integer never
takes any other value—otherwise, the toggle function woweltbnger operate correctly.

In System F, the implementation invariant would be prot@tigthe fact that existential
types are parametric: there is no way to inspect the witnegsadter opening the package,
and hence no client could produce values of tgpather than those returned by the module
(nor could they apply integer operations to values of tgpe

Not soin G. The following program usesst to forge a value of the abstract semaphore
typea:

€client = unpack(a, (so,toggle poll)) = esemin
lets= cast int o 6665 in
(poll s, poll(toggle 9)

Because reduction afnpack simply substitutes the representation tyipe for a, the
consecutive cast succeeds, and the whole expression ®stodtrue, true)—although
the second component should have toggladd thus be different from the first.

The way to prevent this in G is to create a fresh type namas witness of the abstract
type:

€sem1 .= newa’ ~intin
pack (a’,(1,Ax:int.(1—X),AX int.(X # 0))) as Tsem

After replacing the initial semaphore implementation wiitis one,eqjient Will evaluate
to (true, false) as desired—theast expression will no longer succeed, becaaseill be
substituted by the dynamic type namég anda’ # int. (Moreover, since’ is only visible
statically in the scope of theew expression, the client has no accesataand thus cannot
use type conversion to convert terms framto a’ either.)

ZU064-05-FPR

main 29 April 2011 15:27

8 Georg Neis, Derek Dreyer and Andreas Rossberg

Now, while it is clear thahew ensures proper type abstraction in the client program
€qlient, WE Want to prove that it does so fanyclient program. A standard way of doing so is
by showing a more general result, namedpresentation independenfReynolds, 1983):

we show that the moduleyem1is contextually equivalerto another module of the same

type that implements the abstract type in a different wayt€cdual equivalence means
that no G program can observe any difference between the twulas. By choosing that
other module to be a suitable reference implementation@fdT in question, we can
conclude that the “real” one behaves properly under alLioirstances.

The obvious candidate for a reference implementation ofstmaaphore ADT is the
following:

€semz2 .= newa’ =~ bool in
pack (a’, (true, Ax:bool .=x, AX: bool .X)) as Tsem

Here, the semaphore state is represented directly by a &wofieg and does not rely on
any additional invariant. If we can show th&tm1is contextually equivalent tesgmz then

we can conclude tha;em1s type representation is truly being held abstract.

2.4 Contextual Equivalence

In order to be able to reason about representation indepeadee need to make precise
the notion of contextual equivalence.

A contextC is an expression with a single holé, defined in the usual manner (see
Section A.4). Typing of contexts is defined by a judgment fer@: (A; ;1) ~ (A;T; T'),

where the triplgA;T; 7) indicates the type of the hole. The judgment implies thatfor

expressiore with A;T +e: T we havel';T’ + C[g] : T’. The rules are straightforward, the
key rule being the one for holes:
ACH rcr’
F (AT T) ~ (AT T)
We can now define contextual approximation and contextuaivatence as follows
(with o;e] asserting that'; e terminates):

Definition 1(Contextual Approximation and Equivalence
LetA;T e :tandA;TFe T

ATFe <e:T gef VC,T,0. Fo A FC:(AT;T) ~ (056 T)

A 0.Cle]| = 0:Cleg] |
ATFee=e:T d<:e>f ATFea<e. TANATFe<e:T

That is, contextual approximati@nl” - e; < e, : T means that for any well-typed program

contextC with a hole of appropriate type, the terminationQjé;] implies the termination
of C[ey]. Contextual equivalena& I - e; = e, : T is just approximation in both directions.
Considering that G does not explicitly contain any recuwesv looping constructs, the
reader may wonder why termination is used as the notion atitdjuishing observation”
in our definition of contextual equivalence. The reason & thecast operator, together

with impredicative polymorphism, makes it possible to writell-typed non-terminating

programs (Harper & Mitchell, 1999). (This was Girard’s reas$or studying the J operator

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 9

in the first place (Girard, 1972).) Moreover, usicgt, one can encode arbitrary recursive
function definitions (see Section A.5 for details). Othanis of observation may then be
encoded in terms of (non-)termination.

3 A Logical Relation for G: Main Ideas

Following Reynolds (1983) and Mitchell (1986), our genexaproach to reasoning about
parametricity and representation independence is to dafingical relation Essentially,
logical relations give us a tractable way of proving that teons are contextually equiv-
alent, which in turn gives us a way of proving that abstrapetyare really abstract. Of
course, since polymorphismin G is non-parametric, the digiimof our logical relation in
the cases of universal and existential types is somewhauahulo place our approach in
context, we first review the traditional approach to defidogjcal relations for languages
with parametric polymorphism, such as System F.

3.1 Logical Relations for Parametric Polymorphism

Although the technical meaning of “logical relation” is mat woolly, the basic idea is
to define an equivalence (or approximation) relation on @ot inductively, following
the structure of their types. To take the canonical examprow types, we would say
that two functions are logically related at the type— 15 if, when passed arguments that
are logically related at;, either they both diverge or they both converge to values tha
are logically related at,. The fundamental theorerof logical relations states that the
logical relation is a congruence with respect to the coetdrof the language. Together
with what Pitts (2005) calladequacy—i.e., the fact (built into the definition of the logical
relation) that logically related terms have equivalenmi@ation behavior—the fundamen-
tal theoremimplies that logically related terms are contaby equivalent, since contextual
equivalence is defined precisely to be the largest adeqoagruence.

Traditionally, the parametric nature of polymorphism isda&lear by the definition of
the logical relation for universal and existential typegultively, two type abstractions,
Aa.ep andAa.ep, are logically related at typea.t if they map relatedype arguments
to related results. But what does it mean for two type argusterbe related? Moreover,
once we settle on two related type argumen@ndr, at what type do we relate the results
e|[r1/a] andey[15/a]?

One approach would be to restrict “related type argumentsétthesametype1’. Thus,
Aa.e andAa.e; would be logically related afa.t iff, for any (closed) typer’, it is the
case thak[1T'/a] ande;[t’/a] are logically related at the typgt’/a]. A key problem
with this definition, however, is that, due to the quantifizatoverany argument typa’,
the typet[t’/a] may in fact be larger than the typer.7, and thus the definition of the
logical relation is no longer inductive in the structure loé ttype. Another problem is that
this definition does not tell us anything about the parameiaiure of polymorphism.

Reynolds’ alternative approach is a generalization of @isd'candidates” method for
proving strong normalization for System F (Girard, 1974)eTdea is simple: instead of
defining two type arguments to be related only if they are #mees allonanytwo different
type arguments to be related by an (almost) arbitrary miatiinterpretation (subject to

ZU064-05-FPR main 29 April 2011 15:27

10 Georg Neis, Derek Dreyer and Andreas Rossberg

certainadmissibilityconstraints). That is, we parameterize the logical retatibtypet

by an interpretation functiop, which maps each free type variablemto a pair of types

11, T, together with some (admissible) relation between valuéisasfe types. Then, we say
thatA a.e; andA a.e; are logically related at typéa.T under interpretatiop iff, for any
closed types; andt; and any relatiorR between values of those types, it is the case that
ei[11/a] andey[15/a] are logically related at typeunder interpretatiop, o — (11, 75, R).

The miracle of Reynolds/Girard’s method is that it simuétansly (1) renders the logical
relation inductively well-defined in the structure of thepéy and (2) demonstrates the
parametricity of polymorphism: logically related type &thstions must behave the same
even when passed completely different type arguments gholteéhavior may not analyze
the type argument and behave in different ways for diffeeggtiments. Dually, we can
show that two ADTsack (T1,v1) as da.T andpack (12,v») as Ja.T are logically related
(and thus contextually equivalent) by exhibitisgmerelational interpretatioiR for the
abstract typex, even if the underlying type representatiangndt, are different. This is
the essence of what is meant by “representation indepeatienc

Unfortunately, in the setting of G, Reynolds/Girard’s meaths not directly applicable,
precisely because polymorphism in G is not parametric! €bgentially forces us back to
the first approach suggested above, namely to only congiper=trguments to be logically
related if they are equal. Moreover, it makes sensectkheoperator views types as data,
so types may only be logically related if they are indistiispable as data.

The natural questions, then, are: (1) what metric do we udefine the logical relation
inductively, if not the structure of the type, and (2) how de @stablish that dynamic type
generation regains a form of parametricity? We addressthasstions in the next two
sections, respectively.

3.2 Step-Indexed Logical Relations for Non-Parametricity

First, in order to provide a metric for inductively defininigetlogical relation, we em-
ploy step-indexingStep-indexed logical relations were proposed originayyAppel and
McAllester (2001) as a way of giving a simple operationahaatics-based model for
general recursive types in the context of foundational poaorying code. In subsequent
work by Ahmed and others (Ahmed, 2006; Ahmeidal., 2009), the method has been
adapted to support relational reasoning in a variety ofrggst including untyped and
imperative languages.

The key idea of step-indexed logical relations is to index dlefinition of the logical
relation not only by the type of the programs being related atso by a natural number
n representing (intuitively) “the number of steps left in #@mputation”. That is, if two
termse; ande, are logically related at type for n steps, then if we place them in any
program contex€ and run the resulting programs forsteps of computation, we should
not be able to produce observably different resudtg.(Ge;] evaluating to 5 an€[e;]
evaluating to 7). To show tha ande, are contextually equivalent, then, it suffices to
show that they are logically related foisteps, for any.

To see how step-indexing helps us, consider how we mightalafsiep-indexed logical
relation for G in the case of universal types: two type alotivasA a.e; andAa.e; are
logically related a¥a.1 for n steps iff, for any type argument, it is the case that [1/a]

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 11

andey[1’/a] are logically related at[1’ /a] for n— 1 steps. This reasoning is sound because
the only way a program context can distinguish betweare; andA a.e; in n steps is by
first applying them to a type argumerit—which incurs a step of computation for tife
reduction(Aa.g) 17" — g[1'/a]—and then distinguishing betweepnt’ /a] andey[1’/a]
within the nexin — 1 steps. Moreover, although the typ’/a] may be larger thawa.t,

the step index— 1 is smaller, so the logical relation is inductively wellfied.

3.3 Kripke Logical Relations for Dynamic Parametricity

Second, in order to establish the parametricity propedietynamic type generation, we
employKripke logical relationsi.e., logical relations that are indexed pyssible worlds
(In fact, step-indexed logical relations may already beewstbod as a special case of
Kripke logical relations, in which the step index servessrtotion of possible world, and
wheren is a future world ofm iff n < m.) Kripke logical relations are appropriate when
reasoning about properties that are true only under certaiditions, such as equivalence
of modules with local mutable state. For instance, an intper&DT might only behave
according to its specification if its local data structurégy certain invariants. Possible
worlds allow one to codify suclocal invariantson the machine store (Pitts & Stark, 1993).

In our setting, the local invariant we want to establish isatv dynamically generated
type namemeans That is, we will use possible worlds to assign relationa¢iipreta-
tions to dynamically generated type names. For examplesidenthe programssem1
andegemafrom Section 2. We want to show they are logically relatedat o x (a —
a) x (a — bool) in an empty initial worldwg (i.e., under empty type stores). The proof
proceeds roughly as follows. First, we evaluate the two mog. This will have the effect
of generating a fresh type nanmg, with a’ =~ int extending the type store of the first
program anda’ =~ bool extending the type store of the second program. At this point
we correspondingly extend the initial worleh with a mapping froma’ to the relation
R={(1,true), (0,false) }, thus forming a new worle that specifies the semantic meaning
of a’.

We now must show that the values

pack (a’, (1, Ax:int.(1—X),AxX:int.(X# 0))) as Tsem

and
pack (a’, (true, AX:bool .=x, AX:bool .X)) as Tsem

are logically related in the worldl. Since G’s logical relation for existential types is non-
parametric, the two packages must havedhmetype representation, but of course the
whole point of usingnew was to ensure that they do (namely, itd$). The remainder
of the proof is showing that the value components of the pgekare related at the type
a’x(a’— a’) x (a’ — bool) under the interpretation= a’ — (int, bool, R) derived from
the worldw. This last part is completely analogous to what one wouldwsinca standard
representation independence proof.

In short, the possible worlds in our Kripke logical relatsobring back the ability to
assign arbitrary relational interpretatioRsto abstract types, an ability that was seem-
ingly lost when we moved to a non-parametric logical relati®he only catch is that

ZU064-05-FPR

main 29 April 2011 15:27

12 Georg Neis, Derek Dreyer and Andreas Rossberg

we can only assign arbitrary interpretationgdgmamictype names, not tetatic, univer-
sally/existentially quantified type variables.

There is one minor technical matter that we glossed ovelabiove proof sketch but is
worth mentioning. Due to nondeterminism of type name atiocathe evaluation oésem1
andesemzmay resultina’ being replaced by in the former andy; in the latter (for some
freshaj # a5). Moreover, we are also interested in proving equivaleriggagrams that
do not necessarily allocate exactly the same number of tgpees in the same order.

Consequently, we also include in our possible worlds a @dstjectionn between the
type names of the first program and the type names of the s@rogohm, which specifies
how each dynamically generated abstract type is concnetphgsented in the stores of the
two programs. We require them to be in 1-1 correspondencausecthecast construct
permits the program context to observe equality on type saassfollows:

equal? :Va .vB.bool &'

Aa.AB. cast ((a — a) — bool) ((— B) — bool)
(Ax:(a — a).true)(Ax: (B — B).false)(Ax:3.X)

We then consider types to be logically related if they arestimaeup tothis bijection. For
instance, in our running example, when extendiggo w, we would not only extend its
relational interpretation witlr’ — (int, bool, R) but also extend it§ with a’ — (a1, a5).
Thus, the type representations of the two existential pgeka’; andaj, though syntacti-
cally distinct, would still be logically related undet

4 A Logical Relation for G: Formal Details

We now formalize our logical relation for G. For technicasens related to step-indexing
we do not define it directly in terms of equivalent terminatieehavior. Instead, we define it
in terms of approximated termination behavior, such that, ande, are logically related,
thene; contextually approximates (i.e., Ce;] terminates whenevé&e;| does). Logical
equivalence then is just logical approximation in both clil@ns.

Figures 2 and 3 display our step-indexed Kripke logicaltretefor G in full gory detail.
It is easiest to understand this definition by making two eass/er it. First, as the step
indices have a way of infecting the whole definition in a sipeily complex—»but really
very straightforward—way, we will first walk through the wikadefinitionignoring all
occurrences af's andk’s (as well as auxiliary functions like the|, operator). Second, we
will pinpoint the few places where step indices actuallyyma important role in ensuring
that the logical relation is inductively well-founded.

4.1 Highlights of the Logical Relation

The first section of Figure 2 defines the kinds of semanticaibjthat are used in the
construction of the logical relation. RelatioRare sets ohtoms which are pairs of terms,
e, andey, indexed by a possible world. The definition of Atoniry,] requires thag;
ande, have the types; andt, under the type storeg o; andw.o,, respectively. (We use
the dot notatiomw.g; to denote thé-th type store component of, and analogous notation
for projecting out the other components of worlds.)

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 13
Rval d§f
= {(kwvy,v) | (kwvy, V) € R}
Atomp[11, T2] def {(k,w,e1,8) | k< nAwe Worldg A -w.oy;e1 : T1 AF WO € T2}
Reht, 2] %" (R Atom¥![r1,75] |
V(kwv1,vp) € R V(K W) I (k,w). (K,W,vq,V2) € R}
someRel %' {r=(11,12,R) | (11, 72) = 0AR€E Reh[t1, 72]}
Interp, def {pe TVar i SomeRel}
Conc def {ne Tvar ™ Tvar x Tvar |
va,a’ e dom(n).a # a’ = n*(a) # n'(a’) An?(a) # n*(a’)}
Worldy ' w=(01.02.0.0) |
F o1 AFoxAn e ConcA p € Interg, Adom(n) = dom(p) A
p]':O'fOf]l/\pzzo';Of]z}
def
L(O-lvoévr’:p”n d:ef (017027’77LPJn)
Lp]n d:ef {a—[r]n|p(a)=r}
(1.2 R = (11.72,|RIn)
Rln %" {(kwer,e) eR|k<n}
K.w) 3 (kw) % K <kaw e Worlde AW.n Iwn AW.p 3 [wpl AV € {1,2}.
w.gi D w.g; Arng(w.n') —rng(w.n') € dom(w'.g;) — dom(w. ;)
nan % vaedomin). n'(a)=n(a)
pap & vaedomp). p'(a) = p(a)
®w) 3 kw) B K <ka®.w) D (kw)
SR 2T ((kwer,e) | V(K.W) T (kw). (KW, e1,e) € R}

Fig. 2. Worlds and Auxiliary Definitions

Rel[11,12] defines the set cadmissiblerelations, which are permitted to be used as
the semantic interpretations of abstract types. For oupgses, admissibility is simply
monotonicity—i.e., closure under world extension. That is, if a relation in Rehtes two
valuesv; andv, under a worldw, then the relation must relate those values in any future
world of w. (We discuss the definition of world extension below.) Mamitity is needed
in order to ensure that we can extend worlds with interpietatof new dynamic type
names, without interfering somehow with the interpretadiof the old ones.

Worldsw are 4-tupleg o, 02,1, p), which describe a set of assumptions under which
pairs of terms are related. Here, and o, are the type stores under which the terms are
typechecked and evaluated. The finite mappimp@gndp share a common domain, which
can be understood as the set of abstract type names thatémwvgénerated dynamically.
These “semantic” type names do not exist in either strer o0,. (In fact, technically
speaking, we consider ddm) = dom(p) to be bound variables of the world) Rather,
they provide a way of referring to an abstract type that isesgnted bygometype name
a1 in 01 andsometype namea; in 0. Thus, for each name € dom(n) = dom(p),

ZU064-05-FPR

main 29 April 2011 15:27

14 Georg Neis, Derek Dreyer and Andreas Rossberg

theconcretizatiom) maps the “semantic” nanee to a pair of “concrete” names from the
storesg; and oy, respectively. (See the end of Section 3.3 for an exampledt ann.)
As the definition of Conc makes clear, distinct semantic typmes must have distinct
concretizations; consequentlyrepresents partial bijectionbetweeno; ando,.

The last component of the world is p, which assigns relational interpretations to the
aforementioned semantic type names. Formallnaps eaclw to a tripler = (11, 12, R),
whereR is a monotone relation between values of typesnd 1,. (Again, see the end
of Section 3.3 for an example of suctpg The final condition in the definition of World
stipulates that the closed syntactic types in the rangearid the concrete type names in
the range ofy are isomorphic. As a matter of notation, we will writé andp' to denote
the type substitutionga — ai | n(a) = (o1,02)} and{a — 1 | p(a) = (11,72,R)},
respectively.

The second section of Figure 2 displays the definition of dvaktension. In order
for w to extendw (written w 3 w), it must be the case that (¥ specifies semantic
interpretations for a superset of the type nameswhiaterprets, (2) for the names that
interpretsw must interpret them in the same way, and (3) any new semaicrtames
thatw interprets may only correspond tewconcrete type names that did not exist in
the stores ofv. Condition (3) here corresponds to the common practice ipKérlogical
relations proofs, whereby one extends a given “input” wawld future “output” world only
when one wants to establish some invariants about freslolyedéd entities (in the case of
G, fresh type names). Although this condition is not styictecessary for establishing
soundness of the logical relation, it has not in our expesemade it more difficult to
prove anything. Moreover, we have found it to be useful whevipg certain examples
(e.g.the “order independence” example in Section 4.4), becdwses down on the set of
worlds one must consider when one universally quantifies aveture world.

Figure 3 defines the logical relation itsaff[] p is the logical relation for valueg| 1] p
is the one for terms, and[Q]Jw s the one fotypes as datzas described in Section 3 (here,
Q represents thkind of types).

V(1] p relates values at the type where the free type variables ofare given rela-
tional interpretations by. Ignoring the step indice¥,[[7]]p is mostly very standard. For
instance, at certain points (namely, in theandV cases), when we quantify over logically
related (value or type) arguments, we must allow them to cfsoma an arbitrary future
world w' in order to ensure monotonicity. This kind of quantificatmrer future worlds is
commonplace in Kripke logical relations.

The only really interesting bit in the definition ®f 1] p is the use ofl [Q]jw to char-
acterize when the twtypearguments (resp. components) of a universal (resp. efaljen
are logically related. As explained in Section 3.3, we cdestwo types to be logically
related in worldw iff they are the same up to the partial bijectiam . Formally, we define
T[Q]lw as a relation on tripleét;, 72,r), wherer; and 7, are the two logically related
types andr is a relation telling us how to relate values of those typesb@& logically
related means thaj andt, are the concretizations (accordingta)) of some “semantic”
type 7. Correspondinglyr is the logical relation/[[T']w.p at that semantic type. Thus,
when we writeE[[7]]p, a — r in the definition oV [Va.1] p, this is roughly equivalent to
writing E[[T[t’/a]]lp (which our discussion in Section 3.2 might have led the resale
expect to see here instead). The reason for our present ftiauis thatE[[T[t’/a]]lp is

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 15
Valalp ©' p(@) Ry
Vallbp e {(k w.v,v) € Atomn[b, b]}
Valtx o LT {(kow (va,v), (v2.v5)) € Atomn[p(T x 1), p2(T x T')] |
(k7W7V17V2) EVn[[THP/\ (k7W7\/17\/2) EVn[[T/]]p}
Vol = 7o %" {(owAxTien,AxT2.6) € Atomn[p}(t’ — 1), p2(T' — 7)] |

V(K W v, v2) € Ve[T]p. (K. W) 3 (k) =
(K, W, eivi/X,€v2/X) € En[T]p}
Vh[Va.t]p = {(kwAa.e;,Aa.e) € Atomp[pt(Va.1),p?(Va.1)] |
V(K W) 3 (k,W). ¥(T1, T2,1) € T [QIW.
(KW, ei[11/a],ez[r2/a]) € bEn[[T]p, a1}
ValFatle % {(ow pack (11, v1), pack (15,v2)) € Atoma[pt(3a.1), p2(3a.1)] |
3r. (11, T2,1) € TK[QIWA (K, W, v1,V2) € bVn[[T]|p, a1}
Enl[t]p = {(kwey,e) € Atomq[p* (1), p*(1)] |
Vj <k Vop,vi.(Wop;ep —1 op;vp) = 3w, vo. (k—j,w) 3 (k,w) A
W.01 = 01 A (W.0p; € —* W.02;V2) A (K— |, W,V1,V2) € Vn[T] p}

Th[Q]w T fwnt(1),wn2(1), (wpl(t),wp?(t) Valwp)) | fv(T) C domw.p)}
Gnle]lp 4 {(kw0,0) | k< nAw e Worldy}
Gl xtlo %" {low (1, x—va), (o, x—v2)) |

(k,W,y1,¥2) € Gn[[Flp A (k,W,v1,V2) € Vi[[T]]p}
Da[e]lw % (0,00}
Da[s,alw % (@), (3@, (p.ar)|

(81, 8,p) € Dn[[AWA (11, T2, 1) € T[Q] W}
Dn[a, a~t]w % (@, a—py). (. arsf). (p.r)|

(81,5,) € DnAJWA

Ja'.wp(a’) =rAwn(a’) = (B, B2) A

.01 (By) = 81(T) AW.0,(B,) = &(T) ALR=V[T] 0}
ATFeg e T ng ATFe :TAATHe I TA

vn > 0. Ywo € Worldn. ¥(81, 52,) € Dn[[AJwo. V(K W, y1, ¥2) € Gn[[T 0.
(k7W) - (n7WO) = (k7W751yl(e1)752y2(e2)) € En[[T]]P

Fig. 3. Logical Relation for G

not quite right: the free variables ofare interpreted by, but the free variables af are
dynamictype names whose interpretations are givemigy. It is possible to mergp and
w.p into a unified interpretatiop’, but we feel our present approach is cleaner.

Another point of note: since is uniquely determined fromm and 1y, it is not really
necessary to include it in th€[[Q]w relation. However, as we shall see in Section 6,
formulating the logical relation in this way has the benefitismlating all of the non-
parametricity of our logical relation in the one-line defiion of T[[Q]w, which may then
easily be replaced with a more traditional parametric one.

The term relatiorE[[T] o is very similar to that in previous step-indexed Kripke loagi
relations (Ahmeatt al,, 2009). Briefly, it says that two terms are related in anahitiorld

ZU064-05-FPR

main 29 April 2011 15:27

16 Georg Neis, Derek Dreyer and Andreas Rossberg

w if whenever the first evaluates to a value undar;, the second evaluates to a value
underw.o, and the resulting stores and values are related in somefurldw .

The remainder of the definitions in Figure 3 serve to forngadizogical relation foopen
terms.G[[[']|p is the logical relation on value substitutiopswhich asserts that relatgts
must map variables in doffi) to related valuesD[A]lw is the logical relation on type
substitutions. It asserts that relatdd must map variables in dofh) to types that are
related inw. For type variables bound asx ~ 71, thed’s must ma to a type name whose
semantic interpretation iw is precisely the logical relation at Analogously taT [Q]w,
the relationD[[A]lw also includes a relational interpretatipn which may be uniquely
determined from thé’s.

Finally, the open logical relatioA;I" - e; < e : T is defined in a fairly standard way.
It says that for any starting worldp, and any type substitutiordy and &, related in that
world, if we are given related value substitutiopsand y» in any future worldw, then
A yier andd, e, are related iw as well.

4.2 Why and Where the Steps Matter

As we explained in Section 3.2, step indices play a criticd in making the logical
relation well-founded. Essentially, whenever we run intoa@gparent circularity, we “go
down a step” by defining an-level property in terms of am{1)-level one. Of course,
this trick only works if, at all such “stepping points”, thenlg way that an adversarial
program context could possibly tell whether tidevel property holds or not is by taking
one step of computation and then checking whether the undgr{in—1)-level property
holds. Fortunately, this is the case.

Since worlds contain relations, and relations contain sktsples that include worlds,
a naive construction of these objects would have an insterdi cardinality. We thus
stratify both worlds and relations by a step indexevel worldsw € World,, containn-
level interpretationg € Interp,, which map type variables to-level relations;n-level
relationsR € Rel[11, T2] only contain atoms indexed by a step lekek n and a world
w € Worldg. Although our possible worlds have a different structuemtin previous work,
the technique of mutual world and relation stratificatiosiigilar to that used in Ahmed’s
thesis (2004), as well as recent work by Ahmed, Dreyer & Rexs(2009).

Intuitively, the reason this works in our setting is as folfo Viewed as a judgment, our
logical relation asserts that two termsande, are logically related fok steps in a world
w at a typer under an interpretatiop (whose domain contains the free type variables of
7). Clearly, in order to handle the case wheris just a type variabler, the relations in
the range op must include atoms at step indeXi.e.,ther’s must be in SomeRgl,).

But what about the relations in the rangenp? Those relations only come into play in
the universal and existential cases of the logical reldtormalues. Consider the existential
case (the universal one is analogous). Therg,pops up in the definition of the relation
r that comes fronTy [Q]Jw. However, that is only needed in defining the relatedness of
the valuess; andv; at step levek—1 (note the definition ofR in the second section of
Figure 2). Consequently, we only needo include atoms at stefp—1 and lower {(e., r
must be in SomeRg), so the worldw from whichr is derived need only be in Woild

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 17

As this discussion suggests, itdeucial that we “go down a step” in the universal and
existential cases of the logical relation. For the otheesai is not necessary to go down
a step, although we have the option of doing so. For exampdecauld definek-level
relatedness at pair type x 1, in terms of k—1)-level relatedness ai andt,. But since
the type gets smaller, there is no need to. For clarity, we lnaly gone down a step in
the logical relation at the points where it is absolutelyewsary, and we have used the
notation to underscore those points.

4.3 Interesting Properties of the Logical Relation

The main result concerning our logical relation is, of caeyrthat it provides a sound
technique for proving contextual equivalence of G prograesnow present the technical
development necessary to establish this result. For ciewes, we often omit the step
annotation on the restriction operator when it is obvioosificontexte.g.,we will write
(k—j—1,[w]) instead of(k— j — 1, |w|k_j—1). Furthermore, at many places we are re-
quired to establish the well-typedness conditions impasettie definition of Atonfry, T»],
but since this is completely straightforward and usualljides, we will omit this part
of the proofs. If the reader is interested in seeing how theasyfic typing conditions
are maintained, we would refer them to the first author's er&sthesis, which shows
the full gory details in two representative cases (nambky,proofs of Lemma 10.21 and
Theorem 10.41).

4.3.1 Basic Lemmas

We start with a few very basic lemmas that are needed ubigglitan subsequent proofs
(to the extent that we will usually not even apply them extik:

Lemma 1(Transitivity of World Extensign
(K W) 3 (K w) and (K, w) 3 (k,w), then(k”,w”) 3 (k,w).
KW 3 (K, w) and (K, w) T (k,wy), then(K”,w”) 3 (k,w).

Lemma ZRestriction
1. IfK <k, thenVi[1]lp = [1]lP K -
2. If K <k, thenEy [[1]p = | E[[T] P K-

Irrelevance (Lemma 3) states that the logical relation delyends op’s interpretation
of those variables that actually occuriin

Lemma Jlrrelevancd
If |p']n 3 |p]nand ftv(t) C dom(p), then

1. Vi[[t]p’ = Va[1]lp,
2. En[[1])p' = En[[T]]p and
3. Gn[[T]p" = Gn[1]lp-

The next lemma is a combination of the previous two, but fertthpe and type substi-
tution relations.

Lemma 4

ZU064-05-FPR

main 29 April 2011 15:27

18 Georg Neis, Derek Dreyer and Andreas Rossberg
1. If (11, 72,1) € Ta[Q]Wo and(k,w) 3 (n,wp), then(ts, Tz, |r]k) € Tk[Q]w.
2. If (01,0, p) € Dn[Awo and(k,w) 3 (n,wp), then(d1, &2, | p k) € Dk[A]w.

Finally, Inclusion tells us that in order to show two valuekated in the term relation, it
suffices to show them related in the value relation.

Lemma YInclusion
Villtllp C En[lT]lp

Proof
Follows easily from the definition d,[[7]|p, by choosing the final world/ to be the same
as the initial worldw. U

4.3.2 Validity

The first important property to show is that, under the asgiomphatp is a valid relational
interpretation of the free variables of(i.e., p € Interp and fty7) C dom(p)), the logical
relation (LR) for valued/y[[T]|p is itself a valid relationi(e.,an element of Rel).

For the sake of convenience, whenever we Wiz] o, En[[7] 0, Gn[[]|0, Dn[[Aw, and
Ta[Q]lw from now on, we assume € Interp,w € World, and ft{1) C dom(p).

As a first step, we note that every element of the value and telations is a proper
atom.

Lemma §Atomicity)
1. Va[t]lp C Atomi@[p (1), p?(1)]
2. En[[t]lp € Atomn[p*(1), p(T)]

The key property of Rel is that its elements must be closecumarid extension.
Proving this for the value relation is very easy because thpgrty has mostly been built
into its definition.

Lemma 7@ Closure Under World Extensiyn
1. 1f (k,w,vi,v) € Vi[[T]p and(K',w) 3 (k,w), then(K',w,v1,V2) € Vi[[T] p.
2. If (k w1, ¥2) € Go[[l]p and(K',w') 3 (k,w), then(K',w', y1, %) € Gq[[[]p.

Lemma §LR-Validity)
Vi[[T]p € Reh[p'(1),p%(1)]

Proof
Follows from Atomicity and Closure Under World Extension.]

4.3.3 Compatibility

The basic building blocks for proving soundness of our labjielation are what Pitts calls
compatibilitylemmas (Pitts, 2005), which state that the logical relaariosed under the
constructs of the language.

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 19

We first have three properties about syntactic type sultistits, which will be needed for
proving well-formedness of different syntactic elemeatshough (as mentioned earlier)
we will be omitting proofs of syntactic-typing side conditis in the present paper, we
include these lemmas here as they help to clarify the sulliéonship between the various
substitutions inhabitin®,[A]w andG, [p.

Lemma9
If (81,3,p) € Dn[[A]W, thenp' =w.g* o § andw.ci - & : Aande - p' : A

Lemma 10
If (kW y1,¥5) € Gn[[P, thenw.ai; e -y : p' ().

The following is a standard type substitution lemma for ¢adjirelations. It is mainly
needed in showing the compatibility lemmas for quantifiqubty

Lemma 1YLR-Substitutioh
1. Val[t]p, a—(p*(1), p?(T'), ValT']p) = Va[T[T'/a]]p.
2. En[[t]p, a(p*(1"),p?(1"), Val[T']p) = EnlT[T"/a]]p.

The following two lemmas are needed for dealing with theipaldrities of the non-
parametric logical relation. We know by the definitionToandD that for any(&;, &, p) €
Dn[[A]wp and anya bound inA there is somer, such thatd;(a) and &(a) are the
concretizations ofy W.r.t. wo, i.e., &1 (a) = wo.n*(1) and&(a) = wp.n?(1). We define
an operation, au, that yields the substituttbomapping eaclw to its corresponding, (see
Lemma 12):

Definition 2(Anti-Unifier)
Assume tha{dy, &, p) € Dp[Aw. The anti-unifying substitution a¥; andd, with respect
tow.n, written au o1, %, w.n), is defined as follows.
aue.e,n) L' e
def _ _
au(&,a—1), (&, a—12),n) = aud,&,n),a—1 wheret =n~}(11) = n72(1z)
Here,n ' is short for(n')~1, the inverse ofy'. The latter exists, because the definition
of Conc ensures thaj' is injective. Furthermore, since is a partial bijection on the
generated type names, 1(11) andn —2(12) are guaranteed to be equal.

Lemma 12
1. If 5 =auéy, &,n), thend = ntod andd = n?oé.
2. If (01,02,p) € Dn[[A]wo and & = au(dy, &, wWo.n) and (k,w) I (n,wp), thend =
au oy, &, w.).

Proof

1. Follows easily from the definition.

2. First, note thatdr, &, |p k) € Dk[[A]w by Lemma 4. Furthermore, singen is an
extension ofwp.n, the former agrees with the latter on dwg.n). As we know
ftv(&(a)) C rng(wo.n) for anya, itis clear that a@dy, &, wo.n) = audy, &, w.n).

O

ZU064-05-FPR

main 29 April 2011 15:27

20 Georg Neis, Derek Dreyer and Andreas Rossberg

The motivation for defining au is the following property, whiis crucial for proving
compatibility of 3 for the rules ENST, EPACK, and ECAST, in which its non-parametricity
becomes manifest. The property essentially combines Lsst8ution (Lemma 11) with
the observation that, whed, &, p) € Dn[[A]wo, it means thap is actually highly con-
strained. Specifically,o(a).r |» must be the logical relatiovh[d(a) Jwo. o, whered is the
anti-unifier ofd; ando,.

Lemma 13
If (&1,0,p) € Dn[[Awo andd = au(d1, 62, Wo.n) andA + 1, then:

1. Vo[T]p =Va[6(7)]wo.p
2. En[[r]p = En[[8(T)]Wo.p

Proof
By primary induction om and secondary induction on the derivationof 1. We show
the interesting cases in Appendix B.]

Many of the compatibility proofs are straightforward—ttay not deal with worlds in
any interesting way, and the non-parametricity does notvalyw because it is hidden in
T[[Q]. Those proofs are thus essentially analogous to their egpatts in a parametric
System F-like setting (Ahmed, 2006) and we only show one @@ifEUNPACK) here.
The only proofs that actually involve interesting reasgrabout worlds are for ST and
EPACK. We show the latter; the former is similar (and dual).

Lemma 14 Compatibility: EPACK)
If AT e 2 T[t'/al andA - T/, thenA; T F pack (17, e1) 3 pack (T',&) : da.T.

Proof

e Supposeny € Worldy, (31,5, p) € Dn[[A]wo, (K,wW, 1, V2) € Gn[[I']p and (k,w) O
(N, Wo).
To show:(k,w, &1 ya(pack (7', €1)), &)2(pack (T',€2))) € En[Ja.T]lp
Assumew.oy; & yi(pack (T/,e1)) —! 01;pack (&1(1'),v1) wherej < k.
Instantiating the premise yieldg,w, o1 y1(e1), & Vz(€2)) € En[[T[T'/a]]p.
Consequently, there existis— j,w') 3 (k,w) such that

W.02; Yo (pack (T',€)) —* W .0%; pack (p(T'),V2)

with w.op = o1 and(k— j,w,vi,) € Vu[[T[T'/a]]p.
e It remains to showk — j,w,pack (81(7’),v1), pack (&%(1'),v2)) € Va[Fa.1]p.
o Letr = (W.0}(81(").W.03(8(1"). Vic_i [T]0)-
e We now have to show that this witness relation actually hassttape required by
the definition of T [Q]], i.e.,that(51(1"), & (T'),r) € Ty [QIW:
— Letd:=aud, &, Wo.n).
— It suffices to show(d; (1'), &(T'),r) = (W.n1d(1"),w.n25(1’),
(W.p3(T"),W.p?5(T'), Vi i [6(T')]W.-p)).
— By Lemma 4(81,3, [p]) Dy [A]w.
— First, & (") =w.n'd(1") by Lemma 12.
— Secondw.cg*(&(1')) =wW.o*(W.n'd(1’)) = w.p'6(1’) becaussv € World.
— Finally, Vi [T']p = Vk—; [8(T")]W.p by Lemma 13.

ZU064-05-FPR

main 29 April 2011 15:27

Non-Parametric Parametricity 21

o It thus suffices to show thak” W’ vi,v») € Vy[[T] p, arr for any (K’ w") 3 (k—

j,w), which follows by Closure Under World Extension and LR-Sithton from
(k—j,w,v1,v2) € Vo[[T[T'/a]] p.
O

Lemma 15Compatibility: EUNPACK)
fATFe 2e:datandA ol xT'Fes S e TwithART,
thenA; T - unpack{a,x)=ey in e3 = unpack(a,x)=eyiney: T.

Proof

e Supposeng € Worldy, (81,8, p) € Dn[[A]lwo, (K,W,y1,¥2) € Gn[[l]o and (k,w) 3

(n,wp).

o Show:(k,w, 01 yi(unpack (a,x)=ey in €3), O ¥2(unpack (a,X)=ey in €4)) in Ep[[T]p

Assume thatv.o1; 01 yi (unpack (o, X)=e; in e3) terminates:

W.01; & i (unpack (o, x)=ey in e3)
<1 g7;unpack (@, X)=(pack (11,v1)) in d1)1(e3)
=1 aj;ay(e)[n/a]vi/x
=12 0o1jvs
andthatjy +1+ j>=:j <k
Instantiating the first premise yields the existencéof j1,w') 3 (k,w) such that

W.02; Oz)5 (unpack (', X) =€ in €4)
—* W.0p;unpack {(a,X)=(pack (T2,V2)) in &}»(€4)

with w.o1 = o7 and(k— j1, W, pack (11, V1), pack (T2,V2)) € Vh[3a.T']p.

Hence there is such that(ty, T2,r) € T j, [Q]W and (k— ji1 —1,[W |,vq,V2) €
Vall']lp, .

By Lemma 4,(8;, &, [P k-j;) € Di—j, [A]W.

Let(6]/.76é7p/) = ((6150’_’1—1)’ ((6250’_’-[2)’ (LpJ k*h’a'_)r)))’ hencq6i’6é’p/) €
Dy—j, [A, a]w'.

By Closure Under World Extension we kngw— j; — 1, |W |, 1,) € Gq[[l']p and
thus(k—j1—1,[W], %1, ¥2) € G, [F]P".

Lety :=y,x—V, sowe getk— j1 —1,|W |, ¥}, 5) € G_j, [, xT"]p’.

e Instantiating the second premise withe World,_j,, (81, 85,p’) € Dy_j, [A, a]w

and(k— j1— 1, |W], ¥, %) € Gi_j, [T, xT"]p" now yields
(k—j1—1,|W],31yi(e3), BY5(€4)) € Ex—j, [[T]P".

Note that

3'Y(e2)

3(vi(e+2)vi/X)[ti/a]) _
avi(es2)|vi/X[Ti/a]) sincet-w.ai; Vi : (p,a—Vij, [T"IW.p)'(T")
dvi(e2)[ti/alvi/x dito

Thereforeg]; &1 yi(€s)[11/a][v1/X] —J2 a1;v3 implies the existence ¢k — j,w") 3
(k—j1—1,|w]) such that

W.02; QYo (€4)[T2/ Q] [V2 /X —" W' Op; Vs
with w’.01 = o1 and(k— j,w’,va,v4) € Vi_j, [T] 0.

ZU064-05-FPR

main 29 April 2011 15:27

22 Georg Neis, Derek Dreyer and Andreas Rossberg

e SinceAt 1, the latter impliegk — j,w’,v3,v4) € Viy[[T]p.
O

In the proof of compatibility forcast, we first have to argue that the argument types
on the left-hand sided;(11) and &1(12), are equal if and only if the argument types on
the right-hand sided,(1;) and &,(12), are, so that we have the same reduction on both
sides. This is easy to see with the help of Lemma 12, which tedithaty = wg.n' o &
(whered is the anti-unifying substitution a® and d,)—meaning thaty andd, map to
types that are syntactically identical up to some bijectontype names. Recall that we
consider donwg.n) to contain bound variables and thus can assume it to be mli$jom
rng(wo.n') without loss of generality. We then have to distinguish teses. If the type
arguments are not equal (the cast fails), there is not mudotas expected. If the cast
succeeds, however, we basically need to show that the argiypes are alssemantically
equal,i.e., h[T1]]p = Va[[T2]|p. Sinced(t1) = d(12), this follows from Lemma 13.

Lemma 1§Compatibility: ECAST)
If AFT andAt 11 andAF 1o, thenA;TFcast Ty 1o Scast T T2 2 T — Tp — To.

Proof
e Supposeny € Worldy, (01,0,,p) € Dn[[Awo, (K,W,y1,¥2) € Gn[[l o and (k,w) 3
(n,Wo).
o To show:(k,w,cast 91(11) d1(12),cast &(T1) %(T2)) € En[[T1 — T2 — T2]|p.
e Letd :=audy,d,wWp.N).
e Thend(11) =wo.n ' (11) andwg.n & (12) = 8(12) by Lemma 12.
e Consequently,

(1) = &(12)

Wo.n 11(T1) = Wo.n 3y (12)
o(11) = d(12)

Wo.n 1&(11) = Wo.n~13,(T2)
»(11) = »(12)

et

e Casedi(11) = &(T2):

— Then we have the following reductions:
W.0j; cast &(T1) &(T2) =L W.oi; Axp.AX2. X1

— Hence it suffices to show
(k—1,|W],AX1.AX2.X1,AX1.AX2.X1) € Via[[T1 — T2 — T2]|p.

— So supposék’,w) 3 (k—1, |w|) and(K,W,vi,V2) € Vn[[T1] p.

— To show: (K, W, Ax2.v1,A%.V2) € Vy[[T2 — T2]|p.

— So supposék”,w’) 3 (K,w) and (K", w’, v}, V,) € Vu[[T2]p.

— To show:(K’", W’ vi,V2) € h[[T2]]p

— By Closure Under World Extensiofk”,w’,vi,V2) € Vi[[T1] p.

— The claim then follows by)(71) = d(12) and Lemma 13.

e Cased(11) # &(12):

— Then we have the following reductions:

W.0i;cast &(T1) 8(T2) =1 Wi AX1. A% %0

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 23

— Hence it suffices to show

(k—1,|W],AX1.AX2.X0, AX1.A X2.X2) € V[T — T2 — T2]|p.
— So supposék’,w) 3 (k— 1, |w|) and(K,W,v1, Vo) € Vq[T1] p.
— To show:(K', W, AX2.%2,AX2.X2) € Vin[[T2 — T2]|p-
— So supposék”, w") I (K,w') and (K", w’,V},V5) € Va[T2]p.
— To show:(K",wW’,V},V,) € Vh[[T2] p, which is immediate.

O

Sincenew is the only construct that modifies the type store, its corbpiy proof is
also the only one where we actually have to extendiladp components of the initial
world wwith bindings for some fresh dynamically-generated typa@ghereqa). Then is
extended witho — (01, a2), wherea; anda; are the concrete fresh names that are chosen
when evaluating the left and rightw expressions. Thg is extended so that the relational
interpretation ofa is simply the logical relation at typ&'. The proof of this lemma is
highly reminiscent of the proof of compatibility for referee allocation in a language with
mutable references (Ahmed al,, 2009).

Lemma 1{Compatibility: ENEW)
If A a~T;T+e Se:TandAFTandART,
thenA;T Fnew a~T' ine; Snew a~T ine: T.

Proof
e Supposeng € Worldn, (31,5,p) € Dn[[A]wo, (kW y1,Y2) € Gn[[[]p and (k,w) 3
(n,wo).
e To show:(k,w, & yi(new a1’ in 1), & yo(new a1’ in &)) € Eq[[T]p.
e Assumew.ds; 1 yi(new a~T’ in €) terminates:

W.01; O yi(new a1’ in e)
wop,arxd(T); da(en)[ar/al
1" apv

1

and 1+ j =:j <k
e Note that

W.02; B)6 (new a~T in &) =1 W.0z, aax&(T'); Hye(e2)[a2/al.

o Letwy = (W0, 01201 (1)), (W02, 0o~ (1)), (W.n,a—(a1,02)), (W.p,a—T))
forr := (pX(¢'), p2(t'), ([T'] [P), S0(k, War) 2 (k) and(8y. &z, | p)) € Dy A]Wa.

o Let(5},8.p') = (81, ar0), (82, @ 012), (), o)),

¢ Note thatwy.oi(ai) = &(T'), o = wy.n'(a), andwg.p(a).R=Vi[[T']|p]-

e Therefore(d;,85,p’) € Di[A, a~T'[wg.

e By Closure Under World Extension we knofk — 1, [Wq |, ¥4, ¥2) € Gn[l']p and
therefore(k— 1, |wWq |, v, ¥2) € Gk[[F]|p’.

¢ Now instantiate the premise witk, € Worldy, (81,5, 0’) € Di[A, a~T'wg,
(k—1, |wa |, ¥1,¥2) € Gk[[F]p’ and(k—1,|wg]) O (k,wg) to get
(k—=1,|Wa], S y1(€1), B¥s(e2)) € Ex[[T] 0"

e Note thatd/yi(e) = dyi(a)[ai/al.

ZU064-05-FPR main 29 April 2011 15:27

24 Georg Neis, Derek Dreyer and Andreas Rossberg

e Consequently, there existe— j,w') 3 (k— 1,wg) such that
W.02, 02~5(T'); Ba)e(€2) [02/ Q] —* W .03 V2

with w.oy = g1 and(k— j,w, vy, o) € [[T]]p’.
e Because ofA - 1, the latter impliesk— j,wW,v1,v2) € Vh[[T] p.
O

Compatibility for EcoNvV follows from the fact that isomorphic types are semantjcall
equal, which we prove separately below. The interesting asvhent; is a variablea
bound inA asa =~ 15, and the result in this case follows easily from the definitaf
D[A, a~T]w.

Lemma 18Type Isomorphisin
If A+ 11 ~ T2 and(3y, &, p) € Dn[AJw, then

1. Va[[1a]lp = Va[[z2]lp and
2. En[ta]lo = EnlT2]lp-

Lemma 19Compatibility: ECONV)
fATHFe Ze:TandA-T~ 1, thenAT e e T.

Proof
Follows from Type Isomorphism. O

4.3.4 Soundness

Theorem 2@Fundamental Property of)
If A;THe:t,thenA;TFeZe: 1.

Proof
By induction on the typing derivation, in each case usingdppropriate compatibility
lemma. U

The full compatibility and the Fundamental Propertyére at the heart of the sound-
ness proof. Based on that and the following small lemma wdinally establish thafs is
a precongruence with respect to the constructs of the layggaad then prove the actual
soundness theorem.

Lemma 2 LR-Weakening
fATFe 2e: 1, DA T DM andA T, thend;IM e e T.

Lemma 24Precongruence of)
IfATHe Ze:tand-C: (AT 1)~ (AT, 1), thend'; ' - Clet] 3 Cley] : T'.

Proof

By induction on the derivation of the context typing, in ea@se using the appropriate
compatibility lemma. For a context containing another terenalso need the Fundamental
Property; foiC = [_] we need LR-Weakening.]

Theorem 23Soundness of w.r.t. <)
fATHFe Ze:T,thenATHe <e:T.

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 25

Proof

e Suppose- o and-C: (A;T;1) ~ (0;0;7') ando;Cley] |, i.e., 0;Cler] —J o1;vi.
To show:o;Cley] |
By Precongruence we hawe € - Cle;] 3Cley] 1 T'.
To instantiate this, we first need to create an initial woddresentings. Sayo =
a1~=T1,...,0n=Th.

o Let
oy = €
Oit1 = 00,0 11~Tji41
o =0
011 = 0,0 1—0i41
Po = 0
Pir1 = PLA—=V2[Tia]lp
w = (0,0{ai—(a,a)]1<i<n},pn)

e Note thatp; € Interp;, , andw € Worldj., .

¢ Furthermore, given & i < n, it is easy to see thdd;, §,pi) € Dj,2[ai]lw implies
(641,841, Pi+1) € Dji2[[0ia]lw.

o Together with(dp, &, Po) € Dj2[€]lw this meangdn, bn, pn) € Dj2[[T]Jw.

e Instantiateo; € - Cley| = Cley] : T/ with w e World; 2, (én, 6, Pn) € Dj2[o]wand
(j+1,[w).0,0) € G- 2[e]lon to get(j + L, | W], & (Cler]), Sn(Clez]) € Ej-2[T']on.

e Note thatd,(Cle]) =Cla].

e Because of the assumptionCle;] <1 g1;vy, we therefore get;Cley] |.

4.4 Examples

Semaphore.We now return to our semaphore example from Section 2 and $ioew
to prove representation independence for the two diffeiraplementationsegem and
esem2 Recall that the former usést, the latterbool. To show that they are contextually
equivalent, it suffices by Soundness to show that each Ithgegaproximates the other. We
prove only one direction, namelyesem1 = €sem2: Tsem the other is proven analogously.
Expanding the definitions, we need to sh@aw, €semz, €sem? € En[[Tsem]. Note how
each term generates a fresh type namim one step, resulting in a package value. Hence
all we need to do is come up with a word satisfying

o (k—1,w) 3 (kw),
° V\/.O’l = W.01, Q1~int andV\/.Oz = W.02, 02~bool,
. (k— 1,V\/,paCk<al,V1>,paCk<02,V2>) EVn[[Tserr]].

wherey; is the term component @&eni’s implementation. We construat by extending
w with mappings that establish the relation between the npe hames:

R = {(K',W' Vint,Vboo!) € Atomi'y[int, bool] |
(Vint, Vboot) = (1, true) V (Vint, Vbool) = (O, false) }
r := (int,bool,R)

W = ((w.op,aimint), (W02, daabool), (W.n,a—(a1,02)), (|W.p]k_1,aT))

ZU064-05-FPR

main 29 April 2011 15:27

26 Georg Neis, Derek Dreyer and Andreas Rossberg

The first two conditions above are satisfied by construcfianshow that the packages
are related we need to show the existence af avith (a1, az2,1’) € Te_1[Q]W such that
(k—2,|W],v1,V2) € V[[Téeml(a—1"), Wheretsem= a x (a — a) x (a — bool). Since
ai =w.n'(a), r' must be(int,bool, Vi_1 [a]w.p) by definition of T[Q]. Of course, we
definedw the way we did so that thig is exactlyr.

The proof of(k— 2, W |,v1,V2) € Vh[[Ten]] (a+T) decomposes into three parts, follow-
ing the structure of{gy

1. (k—2,|W],1 true) € Vyh[[a](a—r)
This holds becausé[a](a—r) =R
2. (k—=2,|W],AX.(1—x),Ax.=X) € Vh[[a — a]j(a—r)
e Suppose we are given related arguments in a future wokltiw’,v;,v,) €
Vi[[a](a—r) =R
e Hence eithe(vy,V,) = (1,true) or (vy,V,) = (O, false).
e Consequently, v} and—V, will evaluate in one step, without effects, to values
again related byr.
e Inother words(K’,w’,1—V},—V,) € En[afl(a—r).

3. (k—2,|W],Ax.(x# 0),Ax.X) € Vn[la — bool](a+r)
Like in the previous part, the argumentsandv, will be related byRin some future
(K”,w"). Thereforer; 0 will reduce in one step without effectstg, which already
is a value. Because of the definition of the logical relatibtype bool, this implies
(K", w',vy # 0,V,) € Eq[bool] (ar—r).

Partly Benign Effects (Repeatability). When side effects are introduced into a pure
language, they often falsify various equational laws comog repeatability and order
independence of computations. In this section, we offereseridence that the effect
of dynamic type generation is parthenignin that it does not invalidate some of these
equational laws.

Consider the following functions (whereis arbitrary but closed):

vi = AxX(unit—1). let X =x() inx()
Vo = Ax(unit— 7). x()

The only difference betweew andv, is whether the argument is applied once or
twice. Intuitively, eitherx() diverges, in which case both programs diverge, or else the
first application ofx terminates, in which case so should the second. A detailedaio
proof of vy andv,’s equivalence is given in Appendix B.

Partly Benign Effects (Order Independence).Now consider the following functions:

V, = Ax(unit— T).Ay:(unit — 7). lety = y() in (x(),y)
Vy, = Ax(unit — T).Ay:(unit — 7). (x(),y())

The only difference betweew, andv, is the order in which they call their argument
callbacksx andy. Those calls may both result in the generation of fresh tygaes, but
the order in which the names are generated should not matiain, a formal proof of
equivalence can be found in Appendix B.

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 27

However, as we shall see in the exampl&pénde, in the next section, our G language
doesnot enjoy referential transparency. This is to be expectedpuafse, sincaew is an
effectful operation and (in-)equality of type names is olzable in the language.

5 Wrapping

We have seen that parametricity can be re-established ini@dogucing name generation
in the right place. But what is the “right place” in general®at is, given an arbritrary
expressiore with polymorphic typete, how can wesystematicallytransform it into an
expressior® of the same type. that is parametric?

One obvious—but unfortunately bogus—idea is the followitrgnsforme such that
every existentiaintroductionand every universaliminationcreates a fresh name for the
respective witness or instance type. Formally, apply tfievidng rewrite rules tce:

pack(T,€) asT' ~» newa=T in pack(a,€e) as T/
er ~ newa~=Tinea

Obviously, this would make every quantified type abstragtthat any cast that tries to
inspect it would fail.

Or would it? Perhaps surprisingly, the answer is no. To seg ednsider the following
expressions of typ&ia.1') x (Fa.1'):

e = letx=pack(T,V) in (X,X)
€ = <paCk<TaV>7paCk<T7V>>

They are clearly equivalent in a parametric language (affidanthey are even equivalent
in G). Yet rewriting yields:

€] = letx= (newa~T in pack (a,V)) in (X,X)
€, 1= (newa~T in pack(a,v),new a~T in pack (a,V))

The resulting expressions amet equivalent anymore, because they perform different ef-
fects. Here is one distinguishing context:

let p=[]inunpack{ai,x;) = p.1lin
unpack (a2, %) = p.2in equal? oy az

Although the representation typeis not disclosed as suckharing between the two
abstract types ig] is. In a parametric language, that would not be possible.

In order to introduce effects uniformly, and to hide intdrsizaring, the transformation
we are looking for needs to be defined on the structure of typeisterms. Roughly, for
each quantifier occurring itk we need to generate one fresh type name. That is, instead of
transformingeitself, we simplywrapit with some expression that introduces the necessary
names at the boundary, by induction on the type

In fact, we can refine the problem further. When looking at ax@ressione, what do
we actually mean by “making it parametric’? We can mean twitedint things: either
ensuring thae behavegarametrically, or dually, that any contdrtats eparametrically.

In the former case, we are protecting ttumtextagainse, in the latter we prote@against
malicious contexts. The latter is what is sometimes refetweasabstraction safety

ZU064-05-FPR

main 29 April 2011 15:27

28 Georg Neis, Derek Dreyer and Andreas Rossberg
Wrk e axa.x
wrg e A xbx
WrE o, e Ax(ti x 1) (WrE (x.1),Wrg (x.2))
Wrz. o, def AX:(Ty — T2). AX0:T1. WIE, (X(WIE, X1))
Wre, | def Ax(Va.t).Aa.newT o in WrE (xa)
wrs, | def Ax:(3a.T1).unpack (a,X)=xin
new® a in pack (o, Wrf ¥} as 3a.T
newtaine % newa’~ain ela’/al
new- Qaine def <]

Fig. 4. Wrapping for G

Figure 4 defines a pair of wrapping operators that corresporiiese two dual re-
guirements: Wt protects an expressia: Te from beingusedin a non-parametric way,
by inserting fresh names for each existential quantifie@luWr~ forcese to behave
parametrically by creating a fresh name for each polymaripistantiation. The definitions
extend to other types in the usual functorial manner. Bofinifiens are interdependent,
because roles switch for function arguments. These operat@ similar to the type-
directed translation that Sumii & Pierce (2007a) suggesdtablishing type abstraction in
an untyped language (they propose the descriptive ternesvéil” for Wrt, and “sandbox”
for Wr™). However, their use of dynamic sealing instead of type ggtien results in the
insertion of runtime coercions to seal/unseal each indafidalue of abstract type, while
our wrapping leaves such values alone.

Lemma 24
If A1, thenA;e -Wrf @1 — 1.

Given these operators, we can go back to our semaphore exasgpl can now be
obtained as V\ﬁgem esem(modulo some harmlesg-expansions). This generalizes to other
ADTSs: wrapping their implementations positively will gaaitee abstraction by “making
them parametric”. We prove that in the next section.

Positive wrapping at existential type is reminiscennuddule sealindor opaque sig-
nature ascription) in ML-style module languages. If we vieas a module and its type
Te as a signature, then Vgre corresponds to the sealing operat®n- 1. While module
sealing typically only performs static abstraction, wriaygpprovides the dynamic equiva-
lent (Rossberg, 2008). In fact, positive wrapping is prelgisow sealing is implemented in
Alice ML (Rossberget al, 2004), where the module language is non-parametric otherw

The correspondence to module sealing motivates our treitofeexistential types.
Notice that Wi causes a fresh type name to be created only once for eachraidatly
quantified type—that is, corresponding to each existemiabduction Another option
would be to generate type names with each existeglfiaination In fact, such a semantics
would arise naturally were we to use a Church encoding ofexiigls in conjunction with
our wrapping for universals. However, in such a semantiegaaking an existential value
twice would have the effect of producing two distinct abstitgpes. While this corresponds

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 29

TrQw %" (1, 1, (W (11), w0 (12),R)) |

ftv(7j) € dom(w.gj) AR € Reh[w.oy (T1),W.05 (T2)] }

(everything else as in Figure 3)

Fig. 5. Parametric Logical Relation

intuitively to the “generativity” ofunpack in System F, it is undesirable in the context of
dynamic, first-class modules. In particular, in order foraéstract type defined by some
dynamic module M to have some permanent identity (so thairitie referenced by other
dynamic modules), it is important that each unpacking of Kldé a handle to the same
name fort. (See Rossberg’s thesis (2007) for illustrative exampMereover, as we show
in the next section, our definition of wrapping is sufficiemensure abstraction safety.

6 Parametric Reasoning

The logical relation developed in Section 4 enables us tmawparametricreasoning
about equivalence of G programs. It also enables us toag@metricreasoning, but only
indirectly: we have to explicitly deal with the effectsafw and to define worlds containing
relations between type names. It would be preferable if we\able to do parametric rea-
soning directly. For example, given two ter@sande, that do not use casts, and assuming
that the context does not do so either, we should be able somegbout equivalence ef
ande; in a manner similar to what we do when reasoning about System F

6.1 A Parametric Logical Relation

Thanks to the modular formulation of our logical relatiorFigure 3, it is easy to modify

it so that it becomes parametric. All we need to do is swap leaidefinition of T [Q]w,
which relates types as data. Figure 5 gives an alternatifieititen that allows choosing
an arbitrary relation between arbitrary types. Everythétgg stays exactly the same. We
decorate the set gfarametric logical relationghus obtained witH' (i.e., V™, ET, etc.) to
distinguish them from the original ones. Likewise, we wri€ for the notion ofparamet-

ric logical approximationdefined as in Figure 3 but in terms of the parametric relations
For clarity, we will refer to the original definition as tm®n-parametridogical relation.

This modification gives us a seemingly parametric definibbtogical approximation
for G terms. But what does that actuathear? What is the relation between parametric and
non-parametric logical approximation and, ultimatalgntextualapproximation? Since
the language is not parametric, clearly, parametricallyivedent terms generally are not
contextually equivalent.

The answer is given by the wrapping functions we defined imptiegious section. The
following theorem connects the two notions of logical relatand approximation that we
have introduced:

Theorem 2§Wrapping for=37)
1. Ifte; 3™ep: 1, then- Wrif e SWrf ey 1.
2. IfFe 3e: 1, then-Wr; e ITWr; e T.

ZU064-05-FPR

main 29 April 2011 15:27

30 Georg Neis, Derek Dreyer and Andreas Rossberg

This theorem justifies the definition of the parametric lagielation. At the same time,
it can be read as a correctness result for the wrapping apserat says that if we can
relate two terms using parametric reasoning, then theipesitrapping of the first term
contextually approximates the positive wrapping of theoselc Dually, once any properly
related terms are wrapped negatively, they can safely temegdas any term that depends
on its context behaving parametrically.

Rather than giving the proof of Theorem 25 now, we will waitil®ection 8.1 to derive
it as a corollary of a more general result (see Corollary 32).

The alert reader may wonder why this Wrapping Theorem otig &bout closed terms.
First of all, simply allowing open terms would not be corrdedr instance, it is easy to see
that we have

&;x:(Va.bool) - x bool 2™ x unit : bool

because the instantiationsxWill be parametric by definition. For they may of course
be non-parametric (considequal? unit being plugged in fok), hence

&;x:(Va.bool) - x bool X X unit : bool

doesnot hold. However, since W, is just the identity function, this is essentially what
the naive extension of the Wrapping theorem to open termddiell us.

The solution to this (we conjecture) is to wrap all free valagiables at the inverse
polarity, so that the theorem would look as follows:

1. fAT ey 3™ex: 1, thenA; T = Wrf y (e1) IWr{ yr (e2) 1 T.
2. fATHer 3T, thenA;T = Wrp yf (e1) 3TWrp () @ T.

Here the substitutiowrﬁE replaces each free variabter by its wrapping W§ x and could
be defined as follows:
def def
vE €0 Ve =V x—(WrE x)

XT

Proving this theorem correct, however, is another mattee @oblem is that if we attempt
to prove the above statement, after unfolding the definitibtogical approximation in
part (1), we are given son{@y, &, p) € D[A]. To instantiate the assumption appropriately,
(&1, 0, p) needs to be iID™[A]. In part (2), the situation is the other way around. However,
D[A] and D™[A]] are only equal ifA does not contain components of the foma:1’.
Another problem is that wrapped value substitutions—wtsgdke in the proof—are no
longervalue substitutions. All in all, we believe these problems can bleexd, but we
leave the solution to future work.

Finally, what can we say about the content of the paramettation? Obviously, it
cannot contain arbitrary non-parametric G ternesgs /Aa1.Ady.cast a1 a» IS not even
related to itself inE™. Apart from cast, however, the parametric relation is compatible
with all constructs. The corresponding compatibility piofmr the non-parametric relation
carry over. The only difference is that compatibility forA K and ENST become easier
to show. In the proof of the former, for instance, it is immegdithat the witness relation
has the required form, becauE&[[Q] does not actually impose any restrictions.

Consequently, we obtain the following restricted form af fundamental Property:

Theorem 2§Fundamental Property fog™)

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 31

If A;T I-e: 1 andeis cast-free, them\;T Fe"e: 1.

In particular, this implies that any well-typed System Fntdés parametrically related to
itself. The relation will also contain terms wittast, but only if the use otast does not
violate parametricity. (We discuss this further in Secfion

Along the same lines, we can show that our parametric logéedation is sound w.r.t.
contextual approximatiofif, the definition of the latter is limited to quantifying only ew
cast-free contexts:

Theorem 27{Soundness gf ™)
If A;T +-e; 2ey 1 T, then for anycast-freeC: (A;T;T) ~ (0;€; ') with - o

0,Cle1] | = 0:Cler] |

Proof
Analogous to the soundness proof forThe difference is that™ is a precongruence only
W.I.t. cast-free contexts. [l

6.2 Examples

Semaphore. Consider our running example of the semaphore module ablaing the
parametric relation, we can prove that the two implemeostare related without actually
reasoning about type generation. That latter aspect ofrtief [covered once and for all
by the Wrapping Theorem.

Recall the two implementations, here given in unwrappeghfor

Tsem:= 30.0 x (a — a) x (a — bool)
€em1-= Pack (int, (1,Ax:int.(1—X),AX:int.(X # 0))) as Tsem

€ .em2-= Pack (bool, (true, Ax:bool.—X, AX:bool .X)) as Tsem

We can prove- €, 37 €..y2: Tsem USiNg conventional parametric reasoning about
polymorphic termsj.e., we immediately get to pick the relational interpretationtioé

abstract type and don't have to operate on worlds at all:

Proof
e Supposeng € World, and(k,w) = (n,wp).
o To show:(k,W, €. 1, €tamo) € Virl[3a.T]

o LetR:= {(K,W, va,vp) € Atomy_1 | (Va,Vp) = (true,1) V (Va,Vp) = (false,0)} and
r := (int,bool,R), such thatint, bool,r) € T[Q]]w.

e It thus suffices to showk',w,vi,v2) € ViT[a x (a — a) x (a — bool)](a+—r) for
any (k',w') 3 (k,w), wherev; andv; are the term components €f,,;and€,, .
respectively.

e This decomposes into the same three parts as in Section 4.4.

O

Now defineesem1 = Wriyom €em1 @Nd€sema= Wri ., €.ma Which are semantically
equivalent (by some simple applications®f and n-equivalence) to the original defini-
tions in Section 2.3. The Wrapping Theorem then tells ustt&tm1 = €sem2: Tsem

ZU064-05-FPR

main 29 April 2011 15:27

32 Georg Neis, Derek Dreyer and Andreas Rossberg

A Free Theorem. We can use the parametric relation for proving free theor@iiasller,
1989) in G. For example, for artyg: Va.a — a in G it holds that Wr g either diverges
for all possible argumentsandr v: 1, or it returnsvin all cases.

Informally, we first apply the Fundamental Property foto relateg to itself in E, then
transfer this t&&"™ for Wr— g using the Wrapping Theorem. From there the proof proceeds
in the usual way.

Formally, we have to strengthen the claim slightly: Suppase v: Va.a — a. We
want to show that either

1. forallo D gp, 1,V withoFV:1,0,Wr_, , ,VIVT,or
2. forallo 2 gy, T,V with o -V : T, there iso” such that; Wr, . VTV —*d’;V.

Assume (1) does not hold (otherwise we are done). In thiswas@mow that there is at least
one appropriates, Ty, v; such thatop;Wr~ v 11 v; evaluates in := ji+ 1+ jo+1+ |3
steps to somey”; v;:
o, Wr— v vp

=11 oj;(Na.e) 1 vy
*oope(n/alv
—l2 o, (AxT1.€6)) V1
oy € [v1/X

r_>j3 O—i//;\/l
We now show that this implies that awg; Wr~ v 1, v» will indeed evaluate t@; v, (for
someoy):

e By the Fundamental Propertyy; e Fv3v:Va.a — a.

e Constructvg € Worldj,» and(dy, &,p) € Dj2[[0o]wo in the same manner as in the
proof of Soundness (Theorem 23) except thato; = 01 andwg.0 = 0».

e Instantiatingop; € -v 2 v:Va.a — o then yields
(j+1,[wWol,v,Vv) e h[Va.a — a]lp

e By Wrapping,(j + 1, [wo],Wr~ vWr~ v) € E]l[Va.a — a]lp.

e Consequently, there existg+1— j1,w') 3 (j + 1, [Wo]) such that

02, WI™ VI Vo —* W.0y; (AQ.€&) T2 V2

withw'.o1 = o7 and(j +1 - ji,W,Aa.e;,Aa.e;) € V'[Va.a — a]lp.

o LetRi={(k,W,V1,V3) € Atomj1j; [Vi =ViAVz =V} andr := (07 (11), 03 (12), R),
sO(Ty,Tp,1) € TT, j, [QW.

e Instantiate(j +1— j1,W,Aa.e;,Aa.e) € VJ'[Va.a — a]|p to get
(I1+1-j1-1|w] e(n/al,elr/a]) € Effa — afp,a—r.

e Consequently, there existp+1— j; —1—jo,w’) I (j+1— ji—1,[w]) such that

W.02; €12/ @] V2 —* W'.0%; (AX.€5) V2

withw”.o1 =0 and(j+1— j1—1— jo,W Ax€,Ax.€&) € V] [a — a]p,a—r.
e Since(j+1—j1—1—jo—1, W] vi,v2) € R=V]a]p,ar—r, we get(j+1—
1= 1 Ja— 1. [W'] €, vi/X]. & |v2/X]) € EX[allp, .
e Consequently, there exists,w”) J (j+1— j1—1— jo—1,[w’]) such that

W.02; €5[Vo/X] —* W .02V,

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 33

with w”.o1 = 07" and(1,w”,v},V,) € V,J'[a]p,a—r =R
e HenceV, = v; andv, = v, by construction oR.

7 Syntactic vs. Semantic Parametricity

The primary motivation for our parametric relation in theypbus section was to enable
more direct parametric reasoning about the result of (pesn wrapping System F terms.
However, it is also possible to use our parametric relatioreason about terms that are
syntactically or intensionally non-parametricife., that usecast’s), so long as they are
semanticallyorextensionallyparametrici(e.,the use otast is not externally observable).

For example, consider the following two polymorphic funcis of typeva.t4 (here, let
b2i= Ax:bool. if X then 1 else 0):

Tg:=3B.(axa—-B)x(B—a)x(B—a)
g1:=Ada.pack{a x da,(Ap.p, Ax.(x.1), AX.(X.2)})) as Tq
02 = AQ.cast Tyoo Tar
(pack (int, (A p:(bool x bool). b2i(p.1) + 2xb2i(p.2),
AX:int.x mod 2 #£ 0,
Ax:int. xdiv 2 # 0)) as Thool)

(1)

These two functions take a type argumenand return a simple generic ADT for pairs
overa. But gy is more clever about it and specializes the representation £ bool. In
that case, it packs both components into the two least signifibits of a single integer.
For all other typesg, falls back to the generic implementation fram

Using the parametric relation, we will be able to show tha¥rt g, <Wr" g, : Va.1,.
One might find this surprising, sinag is syntactically non-parametric, returning differ-
ent implementations for different instantiations of itpéyargument. However, since the
two possible implementatiorge returns are extensionally equivalent to each othgers
semantically indistinguishable from the syntacticallyaraetricg;.

Formally: Assume that;, 1, are the types aniR, € Rel1;,12] is the relation the
context picks, parametrically, far. If 7, # bool, the rest of the proof is straightforward.
Otherwise, we do not know anything abaytandR,, because; andt, are related il ™.
Nevertheless, we can construct a suitable relationalpréeationRs € Rel[1y x 11, int] for
the typeg:

: (\V),0) | (k,w,V,false), (k,w,V/,false) € Ry }
U {(kw, (v,V'),1) | (k,w,V,true), (k,w,V, false) € Ry}

(wV),2) | (k,w,v,false), (k,w,V, true) € Ry }
U {(kw, (v,V'),3) | (k,w,V,true), (k,w,V true) € Ry}

As it turns out, we do not need to know much about the strucifiRy, to defineRg. What
we are relying on here is only the knowledge that all valudgjirare well-typed, which is
built into our definition of Rel. From that we know that theanmever be any other value
thantrue or false on the right side of the relatioR,. Hence we can still enumerate all
possible cases to defify, and do a respective case distinction when proving equicale
of the projection operations.

ZU064-05-FPR

main 29 April 2011 15:27

34 Georg Neis, Derek Dreyer and Andreas Rossberg

Interestingly, it seems that our proof relies criticallytbie fact that our logical relations
are restricted to syntactically well-typed terms. Were wiift this restriction, we would
be forced (it seems) to extend the definitiorRafwith a “junk” case, but the calls t2iin
g2 would get stuck if applied to non-boolean values. We leavéhér investigation of this
observation to future work.

8 Polarized Logical Relations

The parametric relation is useful for proving parametyigitoperties about (the positive
wrappings of) G terms. However, it is all-or-nothing: it canly be used to prove para-
metricity for terms that expect to lireatedparametrically and alsoehaveparametrically,
cf. the two dual aspects of parametricity described in 8ach. We might also be inter-
ested in proving representation independence for terntglthaot behave parametrically
themselves (in either the syntactic or semantic senseaenesl in the previous section).
One situation where this might arise is if we want to show espntation independence
for generic ADTs that (like the one in Section 7) return diffet results for different
instantiations of their type arguments, but where (unlieedne in Section 7) the difference
is not only syntactic but also semantic.

Here is a somewhat contrived example to illustrate the p@ionsider the following two
polymorphic functions of typ®¥a.14:

To:=3B.(a - B)x (B—aq)

f1 1= Ad.cast Tin: Ta (pack (int, (AX:int.x+1, AX:int.X)) as Tint)
(pack (a, (Ax:a.x,Ax:a.X)) as Ty)

fo := Ad.cast Tin: T (pack (int, (AX:int.X, AX:int.x+1)) as Tint)
(pack (o, (Ax:a.x,Ax:a.X)) as Ty)

These functions take a type argumerdind return a simple ADPB. Values of typex can
be injected intg3, and projected out again. However, both functions speestie behavior
of this ADT for typeint—for integers, injectingh and projecting again will give back not
n, but rathem+ 1. This is true for both functions, but they implement it initietent way.

We want to prove that both implementations are equivaledieumvrapping using a
form of parametric reasoning. However, we cannot do thatgutie parametric relation
from Section 6—since the functions do nmhaveparametrically i(e., the package each
function returns when instantiated witht is semantically different from the one that it
returns for any other type instantiation), they will not le¢ated inE".

To support that kind of reasoning, we need a more refinedhtieratof parametricity in
the logical relation. The idea is to separate the two aforgimeed aspects of parametricity.
Consequently, we are going to have a pair of separate nekafic andE~. The former
enforces parametric usage, the latter parametric behavior

Figure 6 gives the definition of these relations. We call thmtarized because they
are mutually dependent and the polarity¢r —) switches for contravariant positions.,
for function arguments and for universal quantifiers. linely, in these places, term and
context switch roles.

Except for the consistent addition of polarities, the dé&bni of the polarized rela-
tions again only represents a minor modification of the aagione. We merely refine

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 35
Vilale %" Lp(a)RIn
Vi [blle e £ (kw,v,v) € Atomn[b, b}

Vil tTo % flow (vi,), (v2,v5)) € Atomn[p}(T x 1), p2(1 x T')] |
(kw,va,v2) € Vi~ [T]p A (kW vy,) € Vi [T] o}

VE[T = 1p = {(kwAxTi.e1,AXT2.6) € Atomg[p}(T — 1),0%(T' — 1)] |
V(K ,W,v1,v2) € Vi [T]p. (K, W) 3 (k,w) =
(K, W, ei[v1/x,ex[v2/X)) € Ex[[T]p}

ViEvatlp = {(kwAa.e,Aa.e) € Atomy[pl(Va.T),p?(Va.1)] |
V(K. W) 3 (k,w). ¥(11,T2,1) € TT[QW.
(K,w,ei[t1/a],e[12/a)) € E; [T]p, a—r}

ViE[Ba.tlp = {(kwpack(11,v1), pack(T2,V2)) € Atomn[p'(3a.7), p%(3a.7)] |
. (11,To,1) € Tki [QIWA (k,w,va, Vo) € bVE[T])p, arsr}
Exlrle L {(wer,e) e Atomy[pl(r), p2(1)] |

Vj <k Vop,vi. (wog;er —! o3;v1) = 3w, va. (K—j,w) 3 (kw) A
W.01 = 01 A (W02 € —* W.02;V0) A (K— J,W,v1,Vp) € Vi [T]p}

o [Qlw = TQw
To [Qw = Ta[Q]w

Fig. 6. Polarized Logical Relations

the definition of the type relatiofi [Q]w to distinguish polarity: in the positive case it
behaves parametrically.€., allowing an arbitrary relation) and in the negative case-non
parametrically ite., demanding be thelogical relation at some type). Thus, existential
types are parametric i+ but non-parametric ie~, and vice versa for universals.

In fact, all four relations can easily be formulated in a éngnified definition indexed
by 1 ::= g| | +]| — (with € representing the original non-parametric relation). Wenthe
interested reader to the first author’s master’s thesisdtaild (Neis, 2009).

8.1 Key Properties

The way in which polarities switch in the polarized relasanirrors what is going on in
the definition of wrapping. That of course is no accident, aedcan show the following
theorem that relates the polarized relations with the ramapetric and parametric ones
through uses of wrapping:

Theorem 2§Wrapping for=%)
1. Ifte 3T e 1, then-Wrf e SWrf e 1.
2. fFegZe:1,then-Wry g 3~ Wrp ex: T.
3. IfFep 3T e 1, then-Wry e ITWrp e T.
4. If-e 2y 1, then- Wrf g 3~ Wrf e 1.

Intuitively, the first property says that whenever two teams related for parametricses
their positive wrappings will actually be related uncoratiglly, even in a “hostile” non-
parametric context--€., positive wrapping enforces parametric use. By the secoop-pr
erty, when two terms are related unconditionally, theirateg wrappings are related even

ZU064-05-FPR

main 29 April 2011 15:27

36 Georg Neis, Derek Dreyer and Andreas Rossberg
€
Mm
ET
ercE" > €
Wr+ ﬂ
E™

Fig. 7. Relating the Relations

in contexts that expect them tehaveparametrically—ke., negative wrapping enforces
parametric behavior. Dually, the latter two propertiesrabterize the effect of applying
positive and negative wrappings to positively-relatedntein the reverse order. This is
probably best understood graphically: the labeled, outemns in Figure 7 summarize the
situation by showing how the two polarities of wrapping caketterms from one relation
to another (we explain the rest of the diagram in the remaiafihis section).

To show this theorem, we prove the following more generahfemEach subitem here
actually states two properties, which are obtained by foesistently ignoring the left su-
perscript of theX'-2 notation in the whole statement, and then the right one.rf&ance,
(1a) states that the positive wrapping transports values %" to E~ and, independently,
fromV™ to E® (that is, toE). Similarly, each proof actually represents two proofsidiar
neously.

Lemma 29
Supposevg € Worldy, (01,8, p) € DJI[Awo, (k,w) T (n,wp), andA + 1.
1. (@) If(k,w,v,Vvo) eVn +[[r]] , then(k,w, 6, (Wri) vi, (Wri) vo) € Eq ®[[T] p.
(b) If (kwes,e) € EX[1]p, then(k,w,al(wm &1, 8(Wrf) &) € Eq [1] p.
2. (@) If (kWvi,vz) € Vi €[T]p, then(k,w, 8 (Wrp) vi, &(Wr;) v2) € Ex]
(b) If (k,w,el,ez)eE “[t]p, then(k,wél(Wf?)el,éz(Wr)€) € En [1]p

The most interesting cases of the proof (given below) argexiial types in the first part
and universal types in the second part, because that is whemrapping actually has to
generate a fresh type. Technically, what happens in bo#tsdaghat we have some triple
(T1,T2,r) € THF[Q]W, but would like it—or something equivalent—to beTin €[Q]w”,

i.e., T[Qw’, wherew” must be some extension wf that incorporates the new names
anda,. What we do is choose” such that it extends’ by a new semantic nane that
is connected to the concrete nanmgsanda, as well as their representation types, and is
interpreted by the relation Then we can usgay, az, (W’.p(a),w’.p%(a),V[a]w’.p)),

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 37

which has the form required by[Q]w’ and, sincen’.p mapsa to r, carries the same
relation aq11, o,).
Proof
By primary induction om and secondary induction on the derivation’af 7. Note that
& only affects the type annotations (of function arguments ackage types) inside the
wrapping function. We show a few representative cases:
1.(a) e Caser=1 —1":vi=AXg
— To show:(k,w, &1 (AXAX . Wr, (x (Wry, X)) va,
S(AXAX . Wr, (X (Wrp, X)) V) € Eq [T — T"]|p
— Since
W.0;; & (AXAX . Wrl, (x (Wr, X)) vi
=1 W AX.&(Wr) (vi (&(Wr,)X))
it suffices to showk — 1, [w],AX.01(Wr,,) (v1 (81 (Wr,) X)),
AX & (Wrl)) (V2 (&(Wr,) X)) € Vi [T — '] p.
— Suppos€k, W, vs,vs) € Vi ¢[[T'] p where(K,w) 3 (k— 1, [w]).
— To show:(K,w/, 1 (Wr,) (vi (31(Wr ;) va)),
&(Wrk) (V2 (82(Wr;)va))) € En €[T"]p
— So suppose/.a1; 31 (Wr},) (vi (81 (Wr,)va)) terminates:

T"

~ W.op; 0 (Wry,) (va (81(Wrp,) v3))
=t 018y (Wr)) (va V)
=1 0]i 8 (Wry)er(Vg/X
sl2 O-l;V;]_
andji+1+jo=:j<K.
— By induction, (K ,w, & (Wr_,) va, &(Wr ;) vs) € Ex" [T']p.
— This implies the existence ¢k’ — j;,w’) 3 (k',w') such that
W.03; (Wi,) (V2 (8o (Wi)Va)) —* W' 8 (W) (V2 Vi)
with w”.o1 = of and(K' — j1,W’,v5,v}) € Va© [T'] p.
— So by assumption and Closure Under World Extension,
(K —Jj1—1,|w'] eslvy/x, e2lv,/X]) € E " [T"] p.
— By induction,
(K = jo—1, |}, 8u(Wr},) ed[V/X], o(Wr},) €2[Vy /X)) € En *[T"] p.
— Hence there existd — j,w”) 3 (K — j1 — 1,|w’]) such that
W .02; 81 (W) e[V /X —* W .05V

T//
with w”.0y = a1 and(K' — j,W” V;, V) € Vi E[T"] p.
e Caser =Ja.1": v = pack (T;, V)
— To show:
(k,w, &1 (Ax. unpack (ar,X)=xin new a=a in pack (a,Wr}, X)) vy,
&2 (Ax.unpack (a,X)=xin new a~a in pack (a,Wr}, X)) vo)
€ En*[3a.7]p

ZU064-05-FPR

main

38

(b)

29 April 2011 15:27

Georg Neis, Derek Dreyer and Andreas Rossberg

So suppose the first configuration terminates:

W.01; 1 (AX. unpack (ar,X)=Xin new a=a in pack (o, Wr}, X)) vy
1 w.o1; unpack (a,X')=v; in new a~a in pack (a, & (Wr},)X)
1 w.op;new a~Ty in pack (a, 81 (Wr,) vj)
b woy, a1~Ty; pack (a1, [(Wrf,) vi)
I oy;pack (a1, V)

Ll

where 3+ j' =: j < kandd, := &, a—az
Note that

W.02; &2(Ax. unpack (a,X)=xin new a=a in pack (a, Wr}, X)) vz
—1 W.0z; unpack (@, X')=V; in new a~a in pack (a, &(Wr},)x)
<1 W.0p; new a~x Ty in pack (a, & (Wr}) v5)
=1 W0y, aprTy; pack (a2, 3 (Wr) Vs)
whered, := &, a—a;
By assumption we knov(/k’ W, V), V) € VU [T']p, a1 for somer
with (11, 72,1) € T,* T [Qw and any(K',w') 71 (k,w).
Letwgy := ((W.01,01/T1), (W.02, Q2~T7),

(w.n,a—(01,02)), |W.p,a—r |k_2), SO(K—2,wg) T (k,w).

Hence(k— 2,wy,V;,V,) € VAo [T'] p, arr.
By Closure Under World Extension,
(k—3, [Wq |,V4,V) € Ve [T']p, arr and thus(k — 3, [Wq |, V),V,) €
Vot [T]p’ for p’ == |pk 2, a—r.

Letr’:= (Wq.p(a),Wqa.p?(a),Vk 2[la]Wa) = [r]k 2,
so(ay,02,1") € T 5 [QWa € T, [Q]Wq.

Furthermor€dy, &, [P |k—2) € DI ,[A]wg by Lemma 4, so
(81,3, p") € D, A, alwa.
Hence induction yields
(K=3, [Wa |, 8 (Wr) Vg, 8(Wri)) vp) € B[]
Becausean,.0; = W.01, 01~T1, this implies the existence ¢k— j,w') 3
(k—3,|wg]) such that
W.02, O2~2T2; pack (02, 85 (Wr,) Vo) —* W.02; pack (a2, V5)

with W.o1 = gy and(k— j,W,V{,V4) € Vi *[[T']p".

— By Closure Under World Extension,

(KW' V] V3) € Vi ¥ [T]p, a1 i for any (K/,w") = (k— j,),

— Since(a1,az, [I']x-j) € T [Q]w by Lemma 4,

(k—j,wW,pack (a1,V]) as &1(T), pack (a2, Vy) as &(T)) eVy [Ba.v']p.

Supposev.ay; & (Wrf) e, terminates:

 wo a(Wrf) e
a8 (Wr)w
2 O'l;\/l

ZU064-05-FPR

main

2. (a)

29 April 2011 15:27

Non-Parametric Parametricity 39

andji+ jo=:j < ksteps
So by assumption there exigts— j;,w') 3 (k,w) such that

W.02; B (Wr) e, —* W.0p; G (Wrf) vp

with w.o1 = o] and(k— j1,W,v1,Vv2) € Vat " [1] p.
By part (a),(k— j1,W, 81 (Wri) vy, (Wri)va) € Eq ®[[T]p.
Consequently, there existis— j,w’) 3 (k— j1,w') such that

W.02; & (Wr{) vo —* W' .02V,

with w’.o; = o7 and(k— j,w",v},V,) € Vi *[[1]p.
Caser =3a.7": v; = pack (Ti,V))
— To show:(k,w, &1 (Ax. unpack (a,x’)=xin pack (a, Wr_, X)) vi,

& (Ax.unpack (a,X)=xin pack (a,Wr,, X)) v2) € Ep’ [Fa.T']p

So suppose.at; &1 (Ax. unpack (a,X)=xin pack (a,Wr_, X)) vi termi-
nates:

W.071; 01 (AX. unpack (a,x’)=xin pack (a,Wr_, X)) vq
—1 w.oy;unpack (a,X')=vy in pack (a, 8 (Wr,,)X)
<1 woy;pack (11, 8 (Wr,) V)
[N

' oy pack (13,v))

1

where 2+ | =: j <kandd] := &, 0—17;
Note that
W.02; & (AX. unpack (a,x’)=xin pack (a,Wr_, X)) vz

—1 W.0y; unpack (a,X)=V; in pack (a, &(Wr_,) X)

<1 w.oy; pack (T2, 85(Wr,,) V)
whered;, = &,a—1,
By assumption we knowk — 2, [w/,V;,V5) € Vi [T p, arr for some
r with (11, 72,1) € T [Qw C T[Q]w.
Furthermorgdy, &, [p]) € DJ[[A]w by Lemma 4, and therefore we get
(01,8, (Lp],a—r)) € DA, aw.
Hence induction yields
(K—2, |}, 8 (W) v, (Wi,)p) € X [] [i, aror.
Consequently, there existis— j,w') 3 (k— 2, |w]) such that

W.02; pack (T2, 85(Wr,) Vo) «—* W .02; pack (T2, Vy)

with w.oy = o1 and(k—1— j,W,V],V4) e Vo'~ [T'] | p]k, O+
Forany(K’,w") 0 (k—j,w), we get(K”",w’ V], v3) eVa" [T']p,a—r |
by Closure Under World Extension.

Since(11, 1o, |1]) € Tk’fj’[[Q]]V\/ Lemma 4, this implies

(k— j,wW,pack (11,V]), pack (12,V4)) € Va"~[3a.T'] p.

(b) Symmetric to (1b).

ZU064-05-FPR

main 29 April 2011 15:27

40 Georg Neis, Derek Dreyer and Andreas Rossberg

Corollary 30(aka Theorem 28
1 Ifre 3™ e 1, then-Wrt e ¢ Wrt e 1 1.
2. IfFe 3T e T, then-Wr e 3" Wr e 1.

Moreover, we can show that the inverse directions of thegdiéations require no
wrapping at all:

Theorem 3XInclusion for=<*)
1l lfFele:torkeg 361, thenteg I e 1.
2. lfteg 3 &1, thente S e:tand-e ey T

This theorem can equivalently be statedtasC EC E* andE- CE™CE™. InFigure 7, it
is depicted by the unlabeled arrows between differenticelaf which represent inclusion.

Corollary 32 (aka Theorem 26
1 Ifre 3™e 1, then-Wrt e SWrt ey 1.
2. Ifte; 361, then-Wr~ e IT™Wr~ e 1.

Proof
Follows immediately from Theorem 28 and Theorem 31. O

Similarly, the following follows from Theorem 31 togetheitivthe Fundamental Prop-
erty of <:

Corollary 33(Fundamental Property of*)
If - e: T andw € Worldy, then(k,w,e,e) € E/, , [[1].

Interestingly, compatibility does not hold fat* (consider the polarities in the rule for
application), which has the consequence that we cannot Slwsallary 33 directly. For a
similar reason, we cannot show any such propertf¥forat all.
The e-operators in Figure 7 sum up the fundamental propertiethorespective rela-
tions,i.e.,which class of terms (G terms or F terms) are included in whatdtion.
LR-Substitution does not hold for the polarized relatidBensider the case where=
a — a. Then, forinstancey; [t]]p, a—(p*(T'), p?(1'),V, [[T'] p) tells us something about
how its elements behave when applied to arguments ot @i’ p. V" [t[t’/a]]p, on
the other hand, only tells us something about how its elesneahave when applied to
arguments out o, [T'] p.

8.2 Example

Getting back to our motivating example from the beginninthefsection, it is essentially
straightforward to prove that f; <t f, : Va.14. The proof proceeds as usual, except that
we have to make a case distinction when we want to show thdutieion bodies are
related inE™. At that point, we are given a triple, 72,r) € T~ [Q]Jw.

If T4 = int, then we know from the definition @~ thatt, = int, too. We hence know that
both sides will evaluate to the specialized version of th&fABince we are il *, we get to
pick some(1, 75, 1’) € TT[Q]was the interpretation ¢, where the choice af is up to us.

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 41
Types T = ... |pat
Values v = ... |rollvasT
Terms e = ...|rolleasT | unrolle
Evaluation Ctxt's E = ... |rollEasT | unroll E

AT He:t[ua.t/a]
Al Frolleas pa.t: pa.t

AT-e:pa.t

ERoLL
() A;T Funrolle: T[pa.7/a]

(EUNROLL)

o;Elunroll (rollvas1)] — 0;E}V]

Fig. 8. Syntax and Semantics of'Gexcerpt)

The natural choice is to usg = 15 = int with the relation” = (int,int, { (k,w,n+1,n) | ne
Z}). The rest of the proof is then straightforward.

If 71 # int we similarly know thatr, # int from the definition ofT —. Hence, both sides
use the default implementations, which are trivially rethin E*, thanks to Corollary 33.
Finally, applying the Wrapping Theorem, we can conclude the/r™ f; < Wr™ f; :

Ya.1q, and hence by Soundnesswr f; <Wr' f, :Va.1,.

Note how we relied on the knowledge thatand 1, can only bent at the same time.
This holds for types related ifi~ but not inT™ or T™. If we had tried to do this proof in
ET, the typesr; and1, would have been related Ay* only, which would give us too little
information to proceed with the necessary case distinction

9 Recursive Types

In this section, we consider an interesting and non-tris@ension of G with a ubiquitous
feature—namely(iso-)recursive typesiNe call the extended languagé' Gsee Figure 8).
The definition of contextual equivalence does not changeef@xhere are more contexts),
but of course we must extend our logical relation, our définibf wrapping, and our
meta-theory, to handle recursive types.

9.1 Extending the Logical Relations

The step-indexing that we used in defining our logical refsimakes it very easy to adapt
them to G'. There are two natural ways in which we could define the vadletion at a
recursive type:

def
= {

L Vi[ua.t]p K, w, roll vi,roll vo) € Atomy]..] |
[

K,w,vi,vo) € bV [T]p, a—=V([ua.T]p}
K, w, roll v1,roll vp) € Atomg]...] |
k,W,va,V2) € BV, [[T[pa.T/al]p}

2.Vi[uat]p £ {

o~~~ o~

ZU064-05-FPR

main 29 April 2011 15:27

42 Georg Neis, Derek Dreyer and Andreas Rossberg

For: € {&, m}—i.e.,for the non-parametric and parametric forms of the logiekdtion—
the above two formulations are equivalent due to LR-Suligit. Unfortunately, though,
we do not have such a property for the polarized relationabt, ffor1 € {+,—}, the
first definition wrongly records a fixed polarity far. It is thus crucial that we choose
the second one; only then do all key properties continue td mbGH. Adapting the
proofs of soundness, the fundamental property, and relatachas from Section 4, to
GH is straightforward.

9.2 Extending the Wrapping

How can we upgrade the wrapping to account for recursivestyigven an argument of
type na.t1, the basic idea is to first unfold it to tyméua.t/al, then wrap it at that type,
and finally fold the result back to typea.t. Of course, since[ua.7/a] may be larger
thanua.t, a direct implementation of this idea will not result in a felunded definition.

The solution is to use a fixed-point (definable in terms of reive types, of course),
which gives us a handle on the wrapping function we are in tigkell® of defining. Figure 9
shows the new definition. We first index the wrapping by anremmentp that maps each
recursive type variable to the appropriate wrapping and the corresponding syottgie
(we write V@ (a) for the former andy¥P(a) for the latter). Roughly, the wrapping at type
pa.t under environmeng is a recursive functiofr, defined in terms of the wrapping at
T under environmenp, o — (ua.t,F). Since the bound variable of a recursive type may
occur in positions of different polarity, we actually neatmutually recursive functions
and then select the right one depending on the polarity. Dgaascenti will recognize
this as a polarized variant of the so-caldhtactic projectiorfunction associated with a
recursive type (Birkedal & Harper, 1999).

Note that the definition oFﬂ’o,_T takes aunit argument merely for simplicity, so that
we may encode two mutually recursive functions in terms ahgle fix (whose encoding
appears in Section A.5). Note also that the environment pldys a role for recursive
types, and that for anythat does not involve recursive types, #ris the same as our old
wrapping WE from Section 5. Taking W to be shorthand for W@, we can show that
our old Wrapping Theorems for G (Theorems 25 and 28) continbeld for G*.

First of all, Lemma 24 still holds, but we can generalize ifakws:

Lemma 34
If A,dom(¢) - T and for alla € dom(¢) bothA - ¢¥P(a) and
et ¢*(a) :unit— (9P(a) — ¢VP(a)) x ($¥P(a) — ¢"P(a)),
thenA; e - Wrs ¢ : ¢YP(1) — ¢YP(1).
The next is a substitution lemma for the wrapping. Takimdo be T (which is how
it will be used), it says that wrapping at the unfolding of auesive typeua.t (i.e., at
T[ua.t/a]), relative to some environment, is syntacticallythe same as “moving the

unfolding into the environment” and then wrappingrafThis lemma is important for the
recursive type case in the Wrapping Theorem.

Lemma 3§WR-Substitution

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 43
Flor el fix £ (x). (Ax (Ha.T). roll Wr (¢, av—(par.T, £)) (unroll X) as par. 1,
AX:(pa.t).roll Wry (¢, a—(pa.t, f)) (unroll X) as pa.t)
Junit — ((Ha.1) — (Ha.1)) x ((Ha.t) — (Ha.T))
+ def . ptyp val i
Wrg ¢ = Ax¢¥P(a).(¢"(a) ())-1x (if a € dom(¢))
Wrgp LT AxgvP(a).(9v(a) ()).2x (if o € dom(9))
wrig T axax (if a ¢ dom(¢))
Wrg ¢ et Axbx
Wik, ¢ % Ay x 1) (Wi 9 (x 1)), Wi, 6 (x2))
Wi BT (1) AXiT WIE ¢ (x (WIF, X))
Wr, . ¢ 4o Ax(Va.1).Ad.new™ a in WrE ¢ (xa)
Wrs, ¢ def Ax:(3a.7).unpack (@,X)=xin new® a in pack (a, Wrf ¢ ¥') as Ja.1
Wrfard 0 Ax(uot).(Flar ()1
i def
Wiiar 9 = Ax(ua.0). (Rl (0)-2x
wri def WrE o
Fig. 9. Wrapping for &
If ¢’ = ¢,a»—>(ua.r,F[,pa_T), then WE; ¢/ :Wrﬁ[ua_r/a] .
Proof
By induction onrt’. O

The proof of the Wrapping Theorem for*Gs obtained from the one for G by simply
extending the case analysis. Note that the wrapping theetated for an empty envi-
ronmentd (recall that WE is just short for W§ 0). This may seem not general enough at
first, because in the case where pa.1t’ we need an induction hypothesis that talks about
wrapping relative to the non-empty environmert= (a—(1,F?)). This is exactly where
Lemma 35 comes in: it tells us that the terms involvinngthat we are interested in
are the same as the terms involvingﬁv[\{ra] 0 that we know are related by the induction
hypothesis.

Proof
1. (@) Casg = pa.t:vi=roll V|
e To show:(k,w, 81 (AX.(F2 ()).1X) vi, & (AX.(F2 ()).1X) v2) € En *[ua.T']p
e So suppos@.or; & (Ax.(F2 ()).1x) v; terminates

W.01; 81 (AX.(F2 ()).1%) vp
1wy (8(F2) ().1vg
—le way;roll &(Wrf, (a—(T,F2))) (unroll vp)
=1 way;roll &(Wrl (a—(T,F))) v}
oy;roll v{

and 1+ jc+1+j =1 j <k

ZU064-05-FPR main 29 April 2011 15:27

44 Georg Neis, Derek Dreyer and Andreas Rossberg

¢ Note that
W.02; R (AX.(F2 ().1X) V2
=t wop; (R(F) ())-1vz
—le w.op;roll S(Wr (a—(1,FP))) (unroll vo)
=1 woy;roll &(Wr) (a—(1,F?))) v,
e By assumption we knovk — j, [w],v;,V5) € V[T [t/al]lp.
e By induction,
(k= J, [, 8L(Wr o) Vi, B2(W) V) € B ST [T/al]p.
e By Lemma35, Wf,, =Wr}, (a—(1,F)).
e Consequently, there existe— j,w') I (k— jc— 1, [w]) such that

T/a

W.02; roll S(Wr, (a—(T,FP))) Vo —* W.0; roll Vj
with w.o1 = o1 and(k— j,w,V{,Vj) € V, *[T'[t/a]]p.
e By Closure Under World Extension the latter implies
(k— j, W, roll V{, roll vj) € Vin ¥ [[T]|p.
(b) As before.

2. (a) Casa = pa.t’: symmetric to respective case of part (1)
(b) As before.

10 Towards Full Abstraction

The definition of the parametric relatid’” (including the extension for recursive types)
is largely very similar to that of a typical step-indexeditmg relationEg. for F¥, i.e.,
System F extended with pairs, existentials and iso-reeityipes (Ahmed, 2006). The
main difference is the presence of worlds, but they are ntotadlg used in a particularly
interesting way irE™. Therefore, one might expect that any twd ferms related by the
hypotheticaEg: would also be related b and vice versa.

However, this is not obvious: ‘Gis more expressive than[Fin the sense that terms
in the parametric relation can contain non-trivial usesasts €.g.,the generic ADT for
pairs from Section 7), and there is no evident way to badkstede these terms intd'Has
would be needed for function arguments). That invalidatpsoaf approach like the one
taken by Ahmed & Blume (2008).

Ultimately, the property we would like to be able to show iattthe embedding of 4
into G by positive wrapping isully abstract

Fei=m e TaoFW =Wl e T

(The semantics of Fcan be obtained from by restrictingA to simple variable compo-
nents, ignoring all the rules relateddast andnew as well as the conversion rulecEnyv,
and dropping the type store from the reduction relation.t€mal approximation then is
defined as for & except that it does not mention a type store and the univgpadntified
contexts must have typ@;l"; 1) ~ (€;&;1').) This equivalence is even stronger than the

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 45

one about logical relatedness By andE™, becauses is only sound w.r.t. contextual
approximation, not complete.

Since F is a fragment of &, and P contexts cannot observe any difference between
an P term and its wrapping, the direction from right to left, ealequivalence reflectign
is not terribly hard to show.

Theorem 3@Equivalence Reflectign
If AT Fpoep: TandAT e ex: TandA; T =Wrf e =Wrf e 1,
thenA; T e =pney:T.

We present its proof in the remainder of this section.

Unfortunately, it is not known to us whether the other dii@ttequivalence preserva-
tion, holds as well. We conjecture that it does, but are not awka@ysuitable technique
to prove it.

Note that while equivalence reflection also holds for F andi@in the absence of
recursive types—equivalence preservation does not, seaaan-termination is encodable
in G but not in F. Here is a trivial example exploiting this:

er = Af:(unit — unit).f ()
e = Af:(unit — unit).()

Clearly,e; ande, are contextually equivalent in F. Wrapping basically lessteem unmod-
ified, because their type is simple. Howevarande, are not contextually equivalentin G,
since a G context can apply them to a diverging function.

10.1 Equivalence Reflection
AssumingA; T Feu €1 : T andA;T Fee e 1 T, we want to show:
ATHFWI e =gu Wi e T=ATHFe = e T

We will show the contrapositive. Sinceé'Fs a fragment of &, it suffices to show that
any contextC that can distinguiste; and e, in F* will also distinguish their positive
wrappings in &. We do this in two steps. First, we prove tkawill distinguish theirsimple
wrappings(Lemma 40). The simple wrapping, Spvhose definition is given in Figure 10,
is thenew-erasure of the proper wrapping, i.e., obtained by reptpaimynew a~1" in €

in Wr by €[t’/a]. In the terms of Birkedal & Harper (1999), it is precisely thymtactic
projection function associated with the typéhence Sp for “Syntactic projection”). Sub-
sequently, we prove that distinguishing the simple wragpimplies distinguishing the
proper wrappings (Lemma 46).

For the first part we actually show something stronger, nartied so-calledsyntactic
minimal invarianceproperty (Birkedal & Harper, 1999), which says that the agtit
projection function at any type is contextually equivalenthe identity, and thus that any
termeis contextually equivalent in 6to its simple wrapping. We do this with the help of
our non-parametric logical relation, which is sound wadntextual approximation.

Lemma 3{SP-Substitution
If ' = ¢, a—(10.T,Gfia), then SE ¢ = S5 /o -

ZU064-05-FPR main 29 April 2011 15:27

46 Georg Neis, Derek Dreyer and Andreas Rossberg

fix f (X).(Ax:(pa.1).roll Spf (¢, a—(pa.t,)) (unroll X) as pa.t,
Ax:(pa.t).roll Spr (¢, a—(pa.t, f)) (unroll x) as pa.t)
Junit — ((Ha.t) — (ua.1)) x ((Ha.T) — (Ua.1))

Ghar

Sei; ¢ et Ax¢¥P(a).(9¥(a) ()).1x (if o € dom(¢)))
sme L AxevP(a).(¢¥(a) ().2x (if a € dom(¢))
Sps ¢ % Axax (if a ¢ dom(¢))
SiE ¢ et Axbx

def

Spf[tlxrqu = Ax(11x T2).(SP; ¢ (x.1)),Spg, ¢ (x.2))

Spi_ ¢ % Ax(ty— 1) AX:T1. SEE 6 (x (SEE, $ X))

Spt, . ¢ 4 Xx(va.1).Aa.SpE ¢ (xa)

Spi, ¢ def Ax:(3a.7).unpack (a,X')=xin pack (a,Spf ¢ X) as Ja.T
Shard ' Ax(uat).(Glar ()1

Shiacd L Ax(uat).(Glar ()2

Sp 4 Spro

Fig. 10. Simple Wrapping for & (new-erasure of the proper wrapping)

Lemma 38
Supposevg € Worldy, (01,8, p) € Dn[[Awo and(k,w) 1 (n,wp) whereA - 1.

1. If (k,w,v1,v2) € Vi[[T] P,

then(k,w,v1, % (SpE) V2) € En[[T]p and(k,w, &1 (SpE) va, V2) € En[T]p.
2. If (kwer,€) € En[T]p,

then(k,w,el,éz(Spf)eg) € En[[r]]p and(k,w,él(Sp})el,eg) € En[[T]]p-

Proof
By primary induction om and secondary induction on the derivation\df 1.]

Lemma 39
If A;T -e:t1,thenA;T Fe=Spfe: .

Proof
We showA;T e < Spf e: 1. The proof ofA; T - Spf e X e: T is symmetric. The claim
then follows by Soundness.

e Supposeng € Worldn, (81,8,p) € Dn[[A]wo, (k,y1,Y2) € Ga[[]lp, and (k,w) 3
(n,wo).

By the Fundamental Property we knéwl e < e: T.

Instantiating this yieldsk, w, & y1(€), &-(€)) € En[[T]p.

By Lemma 38,(k,w, 511(6), &(SPY) G2y2(e)) € En[T]p.

Note thatd,(Spf) 2y4(€) = &2)4(Spr ©).

Lemma 40

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 47

1. fATFe:1,FC: (AT;T)~ (g€ 1), ande;Cg] |, thene; C[Sp? €] |.
2. IfATHe:1,-C: (AT;T) ~ (g;¢, '), ande;Cle] T, thene; C[SpE €] 1.

Proof
Follows from Lemma 39. O

The second part (Lemma 46) can be proven in a more direct wiatively, the property
holds because the only difference between the reducti@iSg; € and the reduction of
C[Wrf ¢ is that during the latter fresh type names are being gereratd substituted.
Since we assume€ to be cast-free, there is no way for these type names to affect the
reduction and thus the termination behavior. We will onlgtsk the proof and not give
formal detalils, as this would be a very tedious job here andaweal any insights.

The idea is to use a simulation that relates a teyo a terme; iff e, is thenew-erasure
of &, i.e., g is obtained frome, by dropping all occurences okw. Thus, in particular,
the simulation relates the simple wrapping of a term to itgpr wrapping.

The definition of Erase, theew-erasure, is trivial. Its only interesting case is

Erasénew a~T in €) def Erasée[t/a]).

For all the other language constructs, the definition justirges on the subterms. It is easy
to see that Erase satisfies standard congruence and stifsiittoperties:

Lemma 41
If g = Eras€e,) andC is new-free, therC[e;] = Eras€C[e;]).

Lemma 42

1. If e, = Eraséey) and€] = Eraséé,), thene; [€] /X| = Eraséey[€,/X]).

2. If eg = Eraséey), thenej[1/a] = Erasée;[T/a]).

The simulation argument is the following (where™ denotes a reduction sequence with
at least one reduction):

Lemma 43
If e, is cast-free ande; = o3 (Eraséey)) andoy; e, — 01; €, then there are;, ande, with
€] = 05" (Eraséé,)) cast-free andoy; e, —* 05; €.

This already yields the second part of Lemma 46. For the fast\we need one more
lemma and an easy induction.

Lemma 44
If v= 05 (Erasée)), thenoy; e|.

Lemma 45
If e1 is cast-free ande; = o3 (Eras€ey)) andoy;e; |, thenoy; ey |.

Proof
By induction on the length of the reduction sequence, useminas 44 and 43. O

Lemma 46
Suppose andC are bothcast- andnew-free.

1. fATFe:1,FC: (AT;T)~ (g6 1) ande;C[Sp’ € |, theng; C[WrT €] |.

ZU064-05-FPR

main 29 April 2011 15:27

48 Georg Neis, Derek Dreyer and Andreas Rossberg

2. IfATFe:t,FC:(AT;T) ~ (g6 1) ande;C[SpE € T, theng; C[Wrs €] 1.

Proof
SinceC[Spr € = EraséC|Wr7 €)), the first part follows from Lemma 45 and the second
from Lemma 43. U

Finally, we can prove the actual theorem:

Theorem 4{Equivalence Reflectign
If AT Feuer: T, 0T Fpe:TandA; T FWrf e, =Wrf ex: 7, thenA; T e =mi e T.

Proof

Assume thaf\; " -e; = &1 T does not hold, e., § ande, are not contextually equivalent
in FX. Then there is an #=contextC that can tell them apart: sa@[e;] | andCley] 1.
Note thatC also is a valid G context. It is easy to see t@awill distinguishe; ande,

in G, too: €;Cle;] | andg;Cley] 1. Using Lemma 40 and then Lemma 46, this implies
thatC also distinguishes their wrappingsC[Wrs e;] | ande; C[WrE & 1. Consequently,
AT +Wrf e; = WrE e, : T does not hold either. O

11 Incompleteness of the Logical Relation

While our logical relation for & is sound w.r.t. contextual approximation, it is not com-
plete. There are at least two reasons why.

First of all, we have defined our logical relation in such a wayo model a fairly general
notion of non-parametricity, not tied specifically to et operatomper se Consequently,
we conjecture that our logical relation (modulo potenti&hon tweaks) would generalize
to soundly model a language withtgpecase mechanism instead of @st operator. (As
explained in the introduction, we have chosen to stusit because it is simpler yet
still interesting.) Howeverypecase is strictly more powerful tharast, in the sense that
typecase is capable of distinguishing between more programs. Iriquaatr, with typecase
one canpattern-matchon an abstract typer, which one can not always do wittast
(see the example below). Thus, there are programs that weot@nove equivalent in
our model—because they are not contextually equivalefigmptesence afpecase—but
that (we conjectureqre contextually equivalent in the presencecatt, and this clearly
leads our model to be incomplete w.r.t! G

Consider the following example:

T = JB.(intxint— B)x (B —int) x (B — int)
e = newa=intinpack(a x a,{Ap.p, Ax.(x.1),Ax.(x.2))) as T
€ = newa=(intxint)inpack{d,(Ap.p, Ax.(x.1), AX.(x.2))) as T

We strongly conjecture that ande, are contextually equivalent inXs Although the
type components of the existential packages returned Bpde,—namely,a x a anda,
respectively—are structurally different, there seemstaotway to observe this usingst.
Specifically, after unpacking the existential and bindintame (sayf3) for the existential
type variable, there is no way for a client@fto castf to a pair type because, although
B = a x a dynamically, the type name is not in the client’s static scope.

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 49

It is easy to see, however, thet and e, are not equivalent according to our logical

relation: Suppose they aree., - e; 2 & : T (and the other way around). Instantiating
this with a sufficiently large numbér+ 1 and the empty worldv yields (k, |w|,e;, &) €
Ex.1[1]. Now, since obviouslg;e; —! ai~int;vi[a1/a] (wherev is the body o), we
know that there isv such thak; e, —* W.02; v, and(k— 1,w, vy, V,) € Vi1 [[T]]. Clearly,
Vv, must bevs[ay/al, wherev; is the body ofe, andas is some type name. Recall that the
(non-parametric) logical relation at existential typeuiegs the type components of the
two package values to be structurally equal. Clearly, thisat the case here, and so we
have a contradiction.

Of course, if the language hadtgpecase operator, the situation would be different,
because a client could easily distinguihande, by pattern-matching the abstract type
B against a pair type constructor—the pattern match wouldesdt fore; but fail for e,.
Thus, by demanding that the type components of logicallgteel existential packages be
structurally equal, our model appears to be a closer fit f@ngliage withtypecase (in
which an adversarial context can perform complete strattecomposition of abstract
type variables) than for one wittest (in which an adversarial context can only test for
equality against “known” types). This is fine from our persjpee since our goal was never
to tailor our model to the peculiarities of tlast construct. Moreover, even if we were
interested in doing so, it is far from obvious to us how to gouathit.

Our logical relation is also incomplete w.r.t. contextupgpeoximation for reasons that
have nothing to do with the non-parametric features of thguage. In particular, while
we have shown in this paper how our logical relation enabiesto use traditional para-
metric reasoning when reasoning about wrapped prograers, éne weird yet well-known
examples—see, for instance, Pitts (2005)—of equivalehebseen existential packages
that are not provable by direct use of logical relations.e(@jpcally, in these examples,
there is no way to show the existential packages logicalbted because there is no way
of choosing a relational interpretation of the abstracetgpch that the ADT operations
are logically related, yet the existential packages arertkgless contextually equivalent.)
Our logical relation cannot be used to directly prove thapgalences either.

A well-known technique for achieving completeness is tohisethogonality otherwise
known asT T-closure(Pitts & Stark, 1998; Pitts, 2005). We believe it would nodiféicult
to incorporate biorthogonality into our present logicdht®ns in order to render them
complete. However, the completeness guaranteed by bgwittadity does not translate
into a practical technique for establishing weird equikaks like the ones mentioned
above. Moreover, as Benton & Tabareau (2009) have obsdrathogonality also makes
the logical relation (as a practical proof technique) saresito order of evaluation, so
that it would no longer be obvious how to use it to prove edeivees like our “order
independence” result from Section 4.4.

12 Related Work

Type Generation vs. Other Forms of Data Abstraction. Traditionally, authors have
distinguished between two complementary forms of datarattstn, sometimes dubbed
thestaticand thedynamicapproach (Matthews & Ahmed, 2008). The former is tied to the
type system and relies on parametricity (especially fostexitial types) to hide an ADT’s

ZU064-05-FPR main 29 April 2011 15:27

50 Georg Neis, Derek Dreyer and Andreas Rossberg

representation from clients (Mitchell & Plotkin, 1988). & atter approach is typically
employed in untyped languages, which do not have the aldiplace static restrictions
on clients. Consequently, data hiding has to be enforceti@tetel of individual values.
Toward that end, languages provide means for generatingiamames and using them as
keysfor dynamically sealingalues. A value sealed by a given key can only be inspected
by principals that have access to the key (Sumii & Pierce7ap0

Dynamic type generation as we employ it (Rossberg, 2003inioiis et al, 2005;
Rossberg, 2008) can be seen as a middle ground, becausestrésamblance to both
approaches. As in the dynamic approach, we cannot rely cenpricity and instead
generate dynamic names to protect abstractions. Howéese tare type-level names, not
term-level names, and they only “seal” type informationphrticular, individual values
of abstract type are still directly represented by the ulyiey representation type, so that
crossing abstraction boundaries has no runtime cost. Inséhregse, we are closer to the
static approach.

Another approach to reconciling type abstraction and tyyadyasis has been proposed by
Washburn & Weirich (2005). They introduce a type system ftitaatks information flow for
terms and types-as-data. By distinguishing security fubke type system can statically
prevent unauthorized inspection of types by clients.

Multi-Language Interoperation. The closest related work to ours is that of Matthews &
Ahmed (2008). They describe a pair of mutually recursivedakyelations that deal with
the interoperation between a typed language (“ML") and ayped language (“Scheme”).
Unlike in G, parametric behavior is hard-wired into their Mlde: polymorphic instan-
tiation unconditionally performs a form of dynamic sealitigprotect against the non-
parametric Scheme side. (In contrast, we treat as its own language construct, orthog-
onal to universal types.) Dynamic sealing can then be defim¢erms of the primitive
coercion operators that bridge between the ML and Schenes.sikhese coercions are
similar to our (meta-level) wrapping operators, but ourgfqgren type-level sealing, not
term-level sealing.

The logical relations in Matthews & Ahmed’s formalism arerswhat reminiscent of
E™andE, although theirs are distinct logical relations for twodaages, while ours are for
a single language and differ only in the definitionTdfQJJw. In order to prove the funda-
mental property for their relations, they prove a “bridgaitea’—transferring relatedness
in one language to the other via coercions—that is analogposr Wrapping Theorem
for =™ However, they do not propose anything like our polarizegidal relations.

A key technical difference is that their formulation of tlogical relations does not use
possible worlds to capture the type store (the latter isitefilicit in their operational
semantics). Unfortunately, this resulted in a significeat/fin their paper (Ahmed, 2009).
They have since reportedly fixed the problem—independefithyir work—using a tech-
nigue similar to ours, but they have yet to write up the dstail

Proof Methods. Logical relations in various forms are routinely used tosmraabout
program equivalence and type abstraction (Reynolds, 19i&8hell, 1986; Pitts, 2005;
Ahmed, 2006). In particular, Ahmed, Dreyer & Rossberg régespplied step-indexed
logical relations with possible worlds to reason about tgbstraction for a language

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 51

with higher-order state (Ahmeet al., 2009). State in G is comparatively benign, but still
requires a circular definition of worlds that we stratifyngisteps.

Pitts & Stark (1993) used logical relations to reason aboogram equivalence in the
v-calculus, a language with dynamic generation of termileaenes in a manner similar
to G. Since these names are abstract values with only aniggoérator, it is sufficient
in their case to index the logical relation by just the p&higction between names, which
essentially is a simple form of possible world. (In subsequeork, Pitts & Stark (1998)
generalized their technique to handle mutable referentgpe names can encode term-
level names via the typ8a.1l (Rossberg, 2003). Clearly, though, this encoding is not
fully abstract (in particulafia.l is also inhabited by values not containing generated type
names). Moreover, the presence of non-termination in G snarkindamental difference
from thev-calculus that deeply affects the equational theory of éingliage.

Sumii & Pierce (2003) employed logical relations in provsggrecy results for a lan-
guage with dynamic sealing, where generated names are sikeygisa Their logical relation
uses a form of possible world very similar to ours, but tyie¢ational interpretations
to term-level private keys instead of to type names. Theirldgocome into play in the
interpretation of the typéits of encrypted data, whereas in our setup the worlds are
important in the interpretation of universal and existanypes. In another line of work,
Sumii & Pierce (2007a; 2007b) have udgidimulationgo establish abstraction results for
both untyped and polymorphic languages. However, nonesdatiguages they investigate
mixes the two paradigms.

Grossman, Morrisett & Zdancewic (2000) have proposed thetmbstraction brackets
for syntactically tracing abstraction boundaries duringgpam execution. However, this
is a comparatively weak method that does not seem to helpowirmgy parametricity or
representation independence results.

13 Conclusion and Future Work

In traditional static languages, type abstraction is disfaéd by parametric polymorphism.
This approach no longer works when dynamic typing featuiles dasts,typecase, or
reflection are added to the mix. Dynamic type generationestds this problem.

In this paper, we have shown that dynamic type generatiocesdts in recovering type
abstraction. More specifically: (1) we presented a stepxrd logical relation for reason-
ing about program equivalence in a non-parametric langwitbeast and type generation;
(2) we showed that parametricity can be re-establishe@myaically using a simple type-
directed wrapping, which then can be reasoned about usirayanetric variant of the
logical relation; (3) we showed that parametricity can Hanesl into parametribehavior
and parametriusageand gave a polarized logical relation that distinguishes¢hdual
notions, thereby handling more subtle examples. The caofepolarized logical relation
seems novel, and it remains to be seen what else it might el dise Interestingly, all
our logical relations can be defined as a single family diffgonly in the interpretatio
of types-as-data.

An open question is whether the wrapping, when seen as andelimigeof F* into GV, is
fully abstract. We conjecture that itis, but we were onlyegtblshow equivalence reflection,

ZU064-05-FPR

main 29 April 2011 15:27

52 Georg Neis, Derek Dreyer and Andreas Rossberg

not equivalence preservation. Proving full abstractionaims an interesting challenge for
future work.

On the practical side, we would like to scale our logicaltielato handle more realistic
languages, such as ML. We do not expect any problems as long dsal only with pure
language features. But unfortunately, wrapping canndlydas extended to an impure type
of mutable references, at least not without making the wirgppperator primitive in the
language semantics. Nevertheless, we believe that ouoagpstill scales to a large class
of impure languages, so long as we instrument it with a distn between module and
core levels. Specifically, note that wrapping only does gbing “interesting” for universal
and existential types, and is the identity (modgl@xpansion) otherwise. Thus, for a lan-
guage like Standard ML, which does not support first-clasgmporphism—or extensions
like Alice ML, which supports modules as first-class valleg,not existentials—wrapping
is nevemeededn the core level, and could hence be confined to the modwge levsuch a
language, wrapping can be kept implicit, as part of the imglietation of opaque signature
ascription—and in fact, that is exactly what Alice ML doesr Eore-level types, such as
ref types, it can just be the identity. (Also included in “edevel” are recursive types,
for which wrapping otherwise entails expensive copyindnisTis a real advantage of type
generation over dynamic sealing since, for the latter, twednto seal/unseal individual
values of abstract type precludes any attempt to confinepimgpo modules.

References

Abadi, Martin, Cardelli, Luca, Pierce, Benjamin, & RémyDidier. (1995).
Dynamic typing in polymorphic languages.Journal of Functional Programming5(1), 111—
130.

Ahmed, Amal. (2004) Semantics of types for mutable stalh.D. thesis, Princeton University.

Ahmed, Amal. (2006). Step-indexed syntactic logical fiela for recursive and quantified types.
European Symposium on Programming (ESOP)

Ahmed, Amal. (2009)Personal communication

Ahmed, Amal, & Blume, Matthias. (2008). Typed closure casi@n preserves observational
equivalence ACM SIGPLAN International Conference on Functional Pragraing (ICFP)

Ahmed, Amal, Dreyer, Derek, & Rossberg, Andreas. (2009).ateéstlependent representation
independenceACM SIGPLAN Symposium on Principles of Programming Langsid§OPL)

Appel, Andrew W., & McAllester, David. (2001). An indexed o of recursive types for
foundational proof-carrying codéACM Transactions on Programming Languages and Systems
23(5), 657-683.

Benton, Nick, & Tabareau, Nicolas. (2009). Compiling fuanal types to relational specifications
for low level imperative code. ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI)

Birkedal, Lars, & Harper, Robert W. (1999). Constructingenpretations of recursive types in an
operational settinginformation and computatiqri55 3-63.

Girard, Jean-Yves. (1972)nterprétation fonctionelle et élimination des coupaide I'arithmétique
d’ordre supérieur Ph.D. thesis, Université Paris VII.

Grossman, Dan, Morrisett, Greg, & Zdancewic, Steve. (200Byntactic type abstractionACM
Transactions on Programming Languages and Syst2#(§), 1037-1080.

Harper, Robert, & Mitchell, John C. (1999). Parametricitydavariants of Girard’s J operator.
Information processing letters

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 53

Harper, Robert, & Morrisett, Greg. (1995). Compiling polymphism using intensional type analysis.
ACM SIGPLAN Symposium on Principles of Programming Langs#8OPL)

Matthews, Jacob, & Ahmed, Amal. (2008). Parametric polysham through run-time sealing, or,
theorems for low, low pricesEuropean Symposium on Programming (ESOP)

Mitchell, John C. (1986). Representation independence datd abstraction. ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL)

Mitchell, John C., & Plotkin, Gordon D. (1988). Abstract g have existential type.ACM
Transactions on Programming Languages and Syst&6¢3), 470-502.

Neis, Georg. (2009)Non-parametric parametricityM.Phil. thesis, Universitat des Saarlandes.

Pitts, Andrew. (2005). Typed operational reasoni@bap. 7 of:Benjamin C. Pierce (edjdvanced
Topics in Types and Programming LanguageBT Press.

Pitts, Andrew, & Stark, lan. (1993). Observable propenigsigher order functions that dynamically
create local names, or: What's newfternational Symposium on Mathematical Foundations of
Computer Science (MFCS)ecture Notes in Computer Science, vol. 711.

Pitts, Andrew, & Stark, lan. (1998). Operational reasorfimgfunctions with local state Higher
Order Operational Techniques in Semantics (HOOTS)

Reynolds, John C. (1983). Types, abstraction and paranpetiymorphismlnformation processing

Rossberg, Andreas. (2003). Generativity and dynamic opémi abstract typesACM SIGPLAN
Symposium on Principles and Practice of Declarative Progmging (PPDP)

Rossberg, Andreas. (2007]yped open programming: A higher-order, typed approachytoagic
modularity and distributionPh.D. thesis, Universitat des Saarlandes.

Rossberg, Andreas. (2008). Dynamic translucency withratison kinds and higher-order coercions.
Mathematical Foundations of Programming Semantics (MFPS)

Rossberg, Andreas, Le Botlan, Didier, Tack, Guido, BruagJarhorsten, & Smolka, Gert. (2004).
Alice ML through the looking glassSymposium on Trends in Functional Programming (T,FP)
vol. 5.

Sewell, Peter. (2001). Modules, abstract types, and kliggd versioning. ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL)

Sewell, Peter, Leifer, James, Wansbrough, Keith, Nardelincesco Zappa, Allen-Williams, Mair,
Habouzit, Pierre, & Vafeiadis, Viktor. (2007). Acute: Hidével programming language design
for distributed computationJournal of Functional Programmind 7(4&5), 547—612.

Sumii, Eijiro, & Pierce, Benjamin C. (2003). Logical relatis for encryptionJcs 11(4), 521-554.

Sumii, Eijiro, & Pierce, Benjamin C. (2007a). A bisimulatidor dynamic sealing.Theoretical
Computer Scien¢c&751-3), 161-192.

Sumii, Eijiro, & Pierce, Benjamin C. (2007b). A bisimulatidor type abstraction and recursion.
Journal of the ACM54(5), 1-43.

Vytiniotis, Dimitrios, Washburn, Geoffrey, & Weirich, Sieanie. (2005). An open and shut typecase.
ACM SIGPLAN Workshop on Types in Language Design and Imptatr@ (TLDI).

Wadler, Philip. (1989). Theorems for fre€lonference on Functional Programming and Computer
Architecture

Washburn, Geoffrey, & Weirich, Stephanie. (2005). Gerngrad parametricity using information
flow. Symposium on Logic in Computer Science

Weirich, Stephanie. (2004). Type-safe cakturnal of Functional Programmind.4(6), 681—695.

Weirich, Stephanie, Vytiniotis, Dimitrios, Peyton Jone&dmon, & Zdancewic, Steve. (2011).
Generative type abstraction and type-level computa#@i SIGPLAN Symposium on Principles
of Programming Languages (POPL)

ZU064-05-FPR main 29 April 2011 15:27

54 Georg Neis, Derek Dreyer and Andreas Rossberg

A The LanguagesG and GH

The differences between G and' 3.e., everything related to recursive types, are under-

lined.
A.1 Syntax and Semantics
Syntax
Types T = alb|txt|T—1|Va.T|3a.T1|ua.t
Values = X|...|{vVv) | AxT.e|Aa.e|pack (T,v)asT|rollvasT
Expressions e = Vv]|...|(ee)|el|e2|ee|eT|pack(T,v)asT]|
unpack (a,x)=eine| rolleas T | unroll e|
cast TT| newa~Tine
Stores o = ¢g|o,amT
EvaluationCtxts E = ...|(E,e)|(vE)|E1|E2|Ee|VE|ET|
pack (1,E) as T | unpack (a,x)=E ine|
roll E as T | unroll E
Type Environments A = ¢|Aa|AaxT
Value Environments ' = ¢|I,xT

Reduction o,e—ao,e

g;E[{vi,w).i] — 0;E[Vv] (RPROJ
g;E[(AxT.€)V] — 0O;E[e[v/X] (RAPP)
o;E[(Aa.e)T] — o;E[€[t/a]] (RINST)
0;E[unpack (a,x)=(pack (1,Vv)) ine] — o;E[e[t/a][v/X] (RUNPACK)
o;Elunroll(rollvas)] — 0;E|V| (RUNROLL)
(a ¢ dom(o)) 0;E[newa~tingl — 0,a~T;E[€f (RNEW)
(1=12) O;E[cast i 1)] — O;E[AXqiT1.AX0:T2.Xq] (RcasTl)
(11 # 12) O;Elcast i 17] — O;E[AXq:T1.AX0:T2.X0] (RcAsT2)
Type Environments
FA a ¢ domA) AbT a ¢ domA)
e A a A a~T
Value Environments AFT

FA A-T AT x ¢ dom(I")
A€ AFT.XT

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 55

Types AFT

FA ach FA axT el

TVAR TNAME
() A+ a () AFa

AT AFT
AT X1

AT AT

FA
TBASE)——— TTIMES
() () A+ 7L — T2

AT D (TARR)

AabFT
A-Va.t

AabT
A+da.t

AabT
AF ua.t

Type Isomorphism

FA ach (CNAME)FA a~T €N (CBASE) FA
AFa~a AFoa~T AFb~Db

(TALL) (TEXISTS)

(TREQ)

(CVAR)

AFTi~T AFDRT,
AFTIXTORTIXT,

AFTi~T AFDRT,
AFT]_—»TzzTi—»Té

(CTIMES) (CARR)

ANoakFT=T
A-Va.t=Va.t

ANoakFT=T
At+dao.t~3da.t

(CALL) (CEXISTS)

ANoakFT=T
A pa.t=pua.t

(CREC)

AFT =T (CTRANS)AFT%T” AFT' =T
A-T=T A-T=T

(Csym)

Expressions

AT xterl
ATEX:T

(EvAR)

AlFer:iny ATFe: 1 ATFe:T1X T

EPAIR EPRO -
() AT H(e,e) 11X T2 (J ATkei:T
AT xTiHe: ATHe T, —T ATFe: 1,
EABS EAPP
()A;I'i—/\x:rl.e:rl—ﬂz () AThFere: T
Aa;THe:T AT He:Va.t A1

(EGEN) (EINST)

AT HAa.e:vVa.t AT HeTty: T[12/0]

AT He:T11/0] AT
A;T + pack (11,€) as Ja.T7:3Ja.1T

(EPACK)

AT e da.my Aol xnikFe:T AFT
AT Funpack (a,X)=ejinex: T

(EUNPACK)

ZU064-05-FPR main 29 April 2011 15:27

56 Georg Neis, Derek Dreyer and Andreas Rossberg

ATHe:t[ua.t/a)
AT Frolleas pa.t: yua.t

AT Fe:pua.t
A;T Funrolle: T[ua.t/a)

(EROLL) (EUNROLL)

A-T AT AT
AlTFcast T T — T — T2

(EcasT)

Aa=T;TFe:T AFT AFT
AT Hnewa=T'ine: T

(ENEW)

ATkFe: T AFT=T
ATHe:T

(Econv)

A.2 Structural Properties

Type Substitutions & = 0|d,a—T
Value Substitutions y = 0| y,x—v

Configurations

A=0 Aete:T ErT

Foe:t
Type Substitutions AFS:A
F 4o NEd:A ANiT NES:A a'~o(t) e N
NEOD:€ NFEd a—T:AQa NS a—a A axT
Type Substitution Isomorphism AFd=~d:A
o N-o~d:A Nrit=T

N-DO=0D:¢ NEd a—T~d,a—T A Q

NEFO=d A 01~0(1) e & a0 (1) € &Y
NFEd a—ar=d,a—a: A a~=T

Value Substitutions ATHRy:T
ART’ AT Ey:T AT'FV:T
AT'HOD: € AT'Fyx—v: T xT
Lemma 48Weakeniny
1. If AF T andd’ D AandF- A, thenA' 1.
2. fAF T~ 1 andN D Aand- A, thenA' T~ 1.
3. IfAFT andd’ D A andr A/, thenA' =T,

ZU064-05-FPR

4,
5.
6.

main 29 April 2011 15:27

Non-Parametric Parametricity

If A;T Fe:tandd D Aand- 4, thend;T Fe:T.
IfA;T Fe:tandl’ DT andAF T, thenA;IM Fe: 1.
IfA;T Fy:Tandd’ D Aand- A, thend';T = y:T.

Lemma 49Substitutiof

1.

arwN

If Ak TandA'+d: A, thenA' + o(T).

fAFT~T andA'F 3=~ d : A, thenA'+ §(T) =~ &' (T').
If AT andA' 3 : A, thend' - 6(IN).

IfA;T He:tandA' +d: A, thend';5(M) - d(e) : &(T).
IfA; T Fe:TandA; I =y: T, thenA; T+ y(e) : 1.

Lemma 5 Validity)

1.

2.
3.
4,

If A 1, thenk A,

If AT~ T, thenk A

If A-T, thenk A.
IfA;THe:1,then-AandA-T andAF 1.

Lemma 5XVariable Containment

1.

arwDN

If A1 anda € ftv(t), thena € dom(A).

If Ak T~ 1’ anda € ftv(T) Uftv(T'), thena € dom(A).

If AR T anda e ftv(IM), thena € domA).

If AT Fe:tanda € ftv(lM) Uftv(e) Uftv(T), thena € dom(A).
If A;T - e: T andx e fvv(e), thenx e dom(I).

A.3 Type Safety

Theorem 5ZPreservation
If o;e— o’;€ and- o;e: 1, then- o’;€ : 1.

Lemma 53Canonical Values
Assume- o;Vv: T. Then:

1.

ar LN

If T =11 X Tp, thenv = (v,).

If T=11— T, thenv=Axr1].€

If t =Va.1,, thenv=Aa.e.

If T =3a.11, thenv = pack (1p,v1) as T'.
If T=pa.ty, thenv=rollV as T'.

Theorem 54Progres$
If - o;e: Tande#v, theno;e— o’;¢€.

A.4 Contextual Approximation and Equivalence

(contexts) C = []]{(C,e)|(eC)|C.1l|C.2|AxT.C|Ce|eC]|

Aa.C|C1 | pack(t,C) | unpack{(a,x)=Cine]|
unpack (a,x)=einC | rollCas T | unrollC | new a~TinC

57

ZU064-05-FPR main 29 April 2011 15:27

58 Georg Neis, Derek Dreyer and Andreas Rossberg

‘FC:(A;F;T)M(A;F;T)‘

Contexts
CN TCr’ NI

(CEMPTY)I— []: (A1)~ (AT 1)

FC:(AT;T) ~ (AT X1, T2)
CaABs
()i—)\x:rl.C:(A;I’;T)M(A’;I'/;Tl—ﬂz)

FC:(AT;T)~ (AT 1) NT'Fe: 1
CpPAIR.1
(¥ (C,e) 1 (AT 1) ~ (AT X T2)

FC:(AT;T)~ (AT 12) NiMFe:rg
CPAIR.2
(- (€C): (ATT)~ (AT 11 x Tp)

FC:(AF;T) ~ (AT T X Tp)
C -
(CProJ FCi:(AT;1)~ (AT 1)

FC:(ATT)~ (AT 11— 1) NT'Fe:ry
CapPr1
() FCe: (AT;T)~ (AT T2)

FC:(AT;T) ~ (AT 1) NTFeT1— 1
CAPPR.2
() FeC: (AT;1)~ (AT 12)

FC: (A1)~ (N, a;T';T)
CGEN
()I—/\a.C:(A;F;T)M(A/;F/;Va.r/)

FC:(AT;T)~ (AT Va.1y) =)
C
(CiNsT) FCr: (A1)~ (AT 11[12/0))

FCI(AT;T) ~ (ATt /a]) Ni1
C
(CPACK) F pack(12,C) : (A;F;T) ~ (&;T;3a.17)

FC: (AT T) ~ (7 3a. N,aT X1k e N+
(CUNPACK.1) (AT T) ~ (&5 arl). St ML R AR 12
Funpack (a,x)=Cine: (A1) ~ (&;T7;12)

FC: (A1)~ (&, a;T) x11; T2) N:TFe:Ja.y NFT1o
C CK.2
(CuNPACK.2) F unpack (a,X)=einC: (A;T; 1) ~ (&;T7; 1)

FCI(A M T) ~ (AT U'pa.T'/a))
(CROLL) T C as a1 (AT 1) ~ (BT ot 1)

FC: (AT 1)~ (AT pa.T')
(CUNROLL) = e (AT 1)~ (i TRa T

FC: (AT, 1)~ (NN, a~1;T";12) ANFT, NFETY

(CNEW) Frnew a1t inC: (A1)~ (AT 12)

(CCONV)'_ C:(AT;T)~ (A ThT) NETUmT
FC: (A1)~ (AT 1)

ZU064-05-FPR main 29 April 2011 15:27

59

Non-Parametric Parametricity

Termination & Divergence
. def / . * /.
o,e|l < do',v.0,e—="0';v

. def / . * /.
g,el<< fo,v.o,e—="ag;v

Contextual Approximation

ATFeg<e:rT g ATFe :TAAT Fe: TAVO,C,T.
FoAEC: (AT;T)~ (056, T)AN0;Cle1] | = 0;Cler] |

ATFe=e:1 gA;Fl—elgegzr/\A;l'i—eggelzr

Contextual Equivalence

A.5 Encoding Recursive Functions

A.5.1 Usingcast

fixX f(x).e: Ty — Towithvg = AxaT.v(Va.a — T3 — T2) VX
wherev = AaAxga.(Afi(1y— 12).AxT1.6) V
andvV' = AXgTy.(cast a (VO.a — T3 — T2) Xs Vg) Xa

Due to cast’s required default argumentix’ also needs to take a default value. Con-
sequently, a fixed-point operator only exists for inhabitgoks. It is easy to verify the

following two properties:
o 0;(fixX f(x).e: Ty — T with Vg) v—* o;€[fix f(x).e: Ty — T2 with vg/f][v/x], for

anyo.
o IfAT, fiTy — o, xTiHe: TandA; T vy :Va.a — 1y — Tp, thend; T+ (fix' f(x).e:

1] — T with vg) : T — To.

A.5.2 Using Recursive Types

AXa:T1.V (roll vas po.a — 71 — T2) Xa
Axs(pa.o — 11 — 12).(A fi(T1 — T2).AXT1.€)
(AXa:Ty.(unroll Xs) Xs Xa)

fixf(x).e:11 =1 =
wherev =

It is easy to verify the following two properties:
e O;(fixf(x).e: 4 — o) v—"* 0;€ffix f(x).e: 11 — 12/ f][v/X], for anyo.
o If AT, fiTy — To,xTa F€e: T, thenA; T = (fixf(X).e: Ty — 1T2) : T — To.

ZU064-05-FPR main 29 April 2011 15:27

60 Georg Neis, Derek Dreyer and Andreas Rossberg

B Some Proofs
B.1 Lemma 13 from Section 4
If (&1,0,p) € Dn[[A]wo andd = au(d1, &, Wo.n) andA + 7, then:

L. Vo[T]p =Va[6(7)]wo.p
2. En[]p = En[[8(T)]IWo.p

Proof
By primary induction om and secondary induction on the derivationaf 1. We show
the interesting cases.

1. e Caser = a werea € A:

— Then we know from the definition db,[Alwo that there is(11,12,1) €
Tn[[Q]JWo such tha = &1, a+—Ti, &2 andp = py, a—r, po.

— By definition of T,[Q]wo there ist’ such thatt; = wo.n'(1') andr.R=
Vi[[T'wo.p.

— Hencey[[a]lp = Vu[[T'wo.p.

— Sincet; =wo.n'(6(a)) by Lemma 12, the injectivity ofip.n' impliest’ =
o(a).

e Caser = a wherea~T1’ € A:
— Then we know from the definition dd,[[A]wp thatd = &1, a—a;, &2 and

p=p1,a—(pi(T'), pf(T"),Va[T'] 1), p2 With ai = wo.n' (a’) andVa[[T' o1 =
wo.p(a’).Rfor somea’.

— Because of the injectivity ofig.n', wo.n'(a’) = ai = §(a) = wo.n'd(a)
impliesa’ = d(a).

— HenceVa[[alp = Va[t']p1 = Valla'[Wo.p = Va[[(a)[wo.p.

e Caser =Va.t’ withA,a -1’
— We showVy[[T]|p C Vi[[0(T)]]wo.p; the other direction is symmetric.
— Supposék,w,Aa.e;,\a.e) € Vy[Va.T'] p.
— Suppose furthetk”, w”) 3 (K',w') 3 (k,w) and(T1, T2, 1) € T [Q]W.
— We know(K’, W’ ej[11/a],e[12/a]) € En[[T'] p,a—r.
— To show:(K’,w’,ei[11/a],e[12/0a]) € En[6(T")Wo.p, a+—r
— This reduces to showingy [T']]| o |k, a—T = Ex[[0(T)[W.p, arr.
— By assumption and Lemma &}, %, | p]«) € Dy [AJW.

— Let (8, &,p') = (31, a—T1), (8, a—T), (|p] arr)), s0(8],85,0) €
Dy [A,]

— By Lemma 125 = aud;,%,wW.n).

— Since(1y,T2,r) € T [QW we knowt; = w.n'(1”) and
r=(W.pH(1"),w.p%(1") Vi [T"]W.p).

— ltis easy to see then thata—1" = aud;, &, w.n).

— Hence by inductionEy [T']|p’ = Ex [6(T')[t" /a]]w.p.

ZU064-05-FPR main 29 April 2011 15:27

Non-Parametric Parametricity 61

— And by LR-Substitution,
Ec[6(T)[T"/a][W.p
= E¢[8(r)W.p.am(W.pX(1").W.p2(1").Vie[T"]W.p)
= Ek/[[é(r’)]V\/.p,a»—»r.

2. Follows immediately from part (1).

B.2 Partly Benign Effects (Repeatability)
Consider the following functions (whereis arbitrary but closed):

vi = Ax(unit — 1). let X = x() in x()
Vo = A (unit — 1). x()

We first proves; € - vy X v @ (unit — T) — T. The key here is that we relate teecond
call of x in vi—the one whose return value matters—to the single calliofv,. To do so,
we have to construct a worlh that differs from the “initial” worldw’ in that its first type
store is the one in which the second calka$ executed.

Proof

e Supposeng € World, and(k,w) 2 (n,wp).
To show:(k,w,v1,V2) € Vy[[(unit — 7) — 1)
So supposék’,w, Ax.e1,Ax.e2) € Vy[lunit — 1] where(K',w') 3 (k,w).
To show:(K,wlet X = (Ax.e1) () in (Ax.e1) (), (Ax.€) () € Eq[T]
Suppose that/.0p;let X = (Ax.e1) () in (Ax.€1) () terminates:

w.oy;let X = (Ax.e1) ()in (Ax.er) ()
<1 W.oplet X = e[()/x in (Axen) ()
=l gf;let X =V]in (Ax.eq) ()
—' of;(Axer) ()
—' opel()/¥
=2 vy

andthat 3+ j1+ jo =: j <K.
o Letw :=(o],W.02,W.n,W.p), so(k',wj) 3 (K,w).
e Instantiating(k',w,Ax.e;,Ax.&) € Vy[unit — 1] with (K" — j1 —3,[w;],(),()) €
Vi[lunit] gives us(k' — j1 =3, [wy],€[() /X, €[() /x]) € En[[7].
e Instantiating this withog; e1[() /x| —12 o1;] yields(K' — j,w’) 3 (K — j1—3, [w;])
such that
W.02;6[() /X —* W'.02;V,
with w’.01 = 01 and(K' — j,w’,V],V,) € Vi[[T].
e This implies(k' — j,w’) 3 (K,w') and

W.02; (Ax.€) () =" W'.02, V.

ZU064-05-FPR

main 29 April 2011 15:27

62 Georg Neis, Derek Dreyer and Andreas Rossberg

It remains to show the other directidre., ;€ F v, S vy @ (unit — 1) — 7. We first relate
the single call of in v, (resulting in a value/}) to the first call ofx in v;. From that we
learn that the latter terminates. We can then construct kblwgrfromw as in the previous
part and use that to relate the calbah v, also to thesecondcall of x in v;. From that we
learn that also this call terminates and that it results ialaes/, to whichv, is related.

Proof

e Supposeny € World, and(k,w) 3 (n,wp).
To show:(k,w,v2,v1) € Vy[[(unit — 7) — T]]
So supposék’, W, Ax.e;,Ax.€) € Vp[unit — T[] where(k',w') 3 (k,w).
To show:(K,w, (Ax.e) (),let X = (Ax.&) () in (Ax.&) ()) € En[[T]
Supposeav.oy; (Ax.e1) () terminates:

w.o1; (Ax.er) ()
c—>_1 w.og;e1(()/X
1" oy

andthat & j' =: j <K.
e Instantiatingk’,w',Ax.e;,Ax.€2) € Vq[unit —] with (K =1, [W |, (), ()) € Vn[Junit]

yields (k' — 1, |w'|,e[()/X],&2[() /X]) € Ea[[T].
e Consequently there existk’ — j,w’) 3 (k' — 1, |w|) such that

W.02;6[() /X —* W' .09 V).

e Letw, = (W.01,W.02,W.n,W.p), so(K,w,) I (K,w).
e Instantiatingk’,w, Ax.e;,Ax.€2) € Vy[[unit — 1]} with (K — 1, [W5], (), () € Va[unit]

yields (k' — 1, w5, e1[() /X],€[()/¥) € En[[T].
e Consequently there exist' — j,w"”) 3 (K' — 1, |w}]) such that

W.02;6[() /X —* W .00V

with w”.0y = o1 and (K — j,W"”, vy, v4) € Va[[T]).
e Note that
wW.o;let X = (Ax.e) () in (Ax.&) ()
W.0p;let X' = &[()/x] in (Ax.€2) ()
wW.og;let X =V, in (Ax.€2) ()
W05 (Ax.€2) ()
wW'.02;€2(() /X
* V\///-Uz;\/zl

=

LLIL !

B.3 Partly Benign Effects (Order Independence)
Consider the following functions (whereand1’ are arbitrary but closed):

Vi = Ax(unit— T7).Ay:(unit — 7). lety = y() in (x(),Y)
v, = Ax(unit— 7).Ay:(unit — 7). (X(),y())

We showe; e -V 3V, @ (unit — 1) — (unit — ') — (T x T’). (The proof for the other
direction is nearly identical.) We start by constructingarha w;, from the “initial” world

ZU064-05-FPR

main 29 April 2011 15:27

Non-Parametric Parametricity 63

w’ that lets us relate the second applicatiowjr(namelyx()) to the corresponding first
application inv,, which yields a future worldv, and values/, v, that are related in it. We

then

construct another wonld, that lets us relate the first applicationp(namelyy()) to

the corresponding second applicatiornvin which yields a future worladv] and valuess,

v, that are related in it. Finally, we need to merge wougsandw; to obtain a single future
world wz in which the resulting pairé//,V;), (v5,V,) are related. The well-formedness of
that world is not obvious and needs to be verified by case aisaly

Proof

Supposeny € World, and(k,w) = (n,wp).

To show:(k,w,v;,V,) € Vy[[(unit — 1) — (unit — ') — (T x T')]]

So supposék’,W,Az.e;,Aze) € Vy[unit — 1)) where(k',w') 3 (k,w).
To show: (K, W Ay. lety =y() in (Aze1) (),Y),

Ay. ((Az€2) (),y())) € Va[[(unit — ') — (T x T')]
So suppos¢k’, W', A7 .e3,A7Z.€4) € Vy[lunit — T’ where(k”,w") I (K, w).

o To show:(k",w",lety’ = (AZ.€3) () in ((Az€1) (),Y),
)

((Azez)(),(AZ.e4)())) € En[T x T']
SupposeV’.ay;lety = (AZ.e3) () in ((Azer) (),Y) terminates

w.oy;lety = (AZ.e3) () in ((Aze1)(),Y)
<—>_1 w.oy;lety =es3[()/Z]in (Azer)(),Y)
=l gl;lety =vgin ((Azer)(),Y)
—1 o} ((Azer)(),vs)
1 ol (eil()/2 V)
=2 gy, (vf,)

andji+ jo+3=:j <k’
Let (K;,w,) := (K" — j1— 3, (01, W".o2,W'.n, [W.p])), so(Ky,w,) T (K", w").
Instantiatingk',w,Aze;,Azey) € Vy[unit — 1] with (k, w5, (), () € Va[[unit] gives
us (ky, W5, e1[()/2,€2(()/2) € Ea[[T].
Note thatw,.0; = 07.
Consequently, there exis(tk”—j wy) 3 (K5, w,) such that

W'.02:€[() /4 —" W5.02;v;

with wy.o1 = o1 and(K” — j, w3, V], Vv5) € Vy[1].
Let (Kj,wp) == (K" — 1, (W'.01,Wj.00,W'.n, [W'.p])), so(Kj,wy) 3 (K, w").

o Instantiating(k”,w’,AZ.e3,AZ.€4) € Vh[[unit — '] with (K, W}, (), ()) € Va[unit]

gives us(ky,wy, e3[()/Z], €4[()/Z]) € En[[T'].
Note thatw}.o; = w".07.
Consequently, there exists” — 1 — j1,w/]) 3 (kj,w;) such that

W5.02; €4(()/Z] =" WL.02V

with wy.o1 = o7 and(K” — 1 — j1, W/, V5,v}) € Vu[[T'].

W.l.o.g. (domw/.n) \ domw’.n)) N (domw;,.n) \ domw’.n)) = 0, sow;.n U
w,.n andw;.p Uw;.p are well-defined.

Letws := (Wy.01,W[.02,W;.n UW,.1, LV\/{.ka//,j uwy.p).

e To see thatv; is well-formed, it remains to show the injectivity of.n':

ZU064-05-FPR main 29 April 2011 15:27

64

Georg Neis, Derek Dreyer and Andreas Rossberg

— Note that rngw/.n'") \ rng(w”.n') C domw/.c;) \ dom(w;.c;) by definition of
world extension.
— Similarly, rngwj.n")\ rng(w”’.n') C dom(wj.a;) \ domw,.a;) by definition of
world extension.
— Supposear,a’ € domws.n).
— Casea,a’ e domw’.n): Trivial.
— Casea e domw’.n) anda’ € domwj.n) \ domw”.n):
— Thenws.n'(a) € domw”.a;) andws.n'(a’) € domw;.q;) \ domw;.q;).
— Sincew,.q; = w".g;, we havews.n'(a) #ws.n'(a’).
— Casea e domw’.n) anda’ € domw;.n)\ domw".n):
— Thenws.n'(a) € domw”.a;) andws.n'(a’) € domwj.ai) \ domw,.a;).
— Sincew,.q; = w".g;, we havews.n'(a) #ws.n'(a’).
— Casea € domw/.n)\ domw’.n) anda’ € domwj.n)\ domw".n):
— Thenws.n'(a) € domw;.g;) \ domw;,.c;) andws.n'(a’) € domw;.a;) \
dom(w,.g;).
— Fori = 1 this meansvs.n(a) € domw,.o1) = dom(o;) = domw,.0), SO
it cannot equalvs.n*(a’).
— Fori = 2 this meansvs.n?(a) € domw,.0») \ domw,.0»), so it cannot
equalws.n?(a’).
Also note thatk” — j,w3) 3
Hence (K" — j,ws,V/,Vj) €
(K" =, w3, (V1,3), (V3, V%))
And of course

(" — J?VV,ZI) and(kﬂ— jaW3) g (k/l_ 1_ leV\/ll)
Vi[7]] and (K" — j,wa, V4, V) € Vu[T'] and therefore
€VWnlT x T'].

W05 (A2.82)), (AZ.€2) ()) = .0 (V3 Vy).

